БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121. деревне и в с. х-ве США.

Сов. статистика имеет большой опыт типологич. С. г.: напр., баланс народного хозяйства СССР предполагает сложную и разветвлённую систему С. г.; группировка классового состава населения (табл. 2); группировка осн. производств, фондов по социально-экономич. видам х-ва; группировка совокупного общественного продукта и др.

В бурж. статистике группировки используются недостаточно, а в случаях применения они большей частью строятся на неправильных основаниях, не способствуют характеристике действительного положения вещей в капиталистич. странах, напр, группировка с.-х. предприятий по размерам земельной площади приукрашивает положение мелкого произ-ва в с. х-ве; группировка населения по занятиям не раскрывает действительную классовую структуру буржуазного общества и т. д.

Социально-экономич. особенности социалистич. общества ставят новые задачи перед С. г. Метод группировок применяегся при анализе выполнения нар.-хоз. планов, выяснении причин отставания отд. предприятий и отраслей, выявлении неиспользованных резервов (напр.,

Табл. 2. - Классовый состав населен и я CCC P, %



1913

1928

1975



Всё население (включая неработающих членов семей)...

100

100

100



В том числе:









Рабочие и служащие...

17,0

17,6

82,9



из них рабочие

14,6

12,4

60,9



Колхозное крестьянство и кооперированные кустари



2,9

17,1



Крестьяне - единоличники и некооперированные кустари ...

66,7

74,9

0,0



Буржуазия, помещики, торговцы н кулаки ...

16,3

4,6

-




С. г. предприятий по степени выполнения планов, степени рентабельности). С. г. предприятий по степени автоматизации и механизации, электровооруженности труда и по др. технико-экономич. признакам важны для характеристики внедрения достижений научно-технич. прогресса в произ-во.

Лит. см. при ст. Статистика.

T. В. Рябушкин.


СТАТИСТИЧЕСКИЕ ОЦЕНКИ, функции от результатов наблюдений, употребляемые для статистического оценивания неизвестных параметров распределения вероятностей изучаемых случайных величин. Напр., если X1, ..., Xn - независимые случайные величины, имеющие одно и то же нормальное распределение с неизвестным средним значением а, то функции - среднее арифметическое результатов наблюдений
[2433-11.jpg]

и выборочная медиана [$\mu$] = [$\mu$](Х[$\iota$],.... Xn) являются возможными точечными С. о. неизвестного параметра а. В качестве С. о. к.-л. параметра [$\theta$] естественно выбрать функцию [$\theta$]*(Х[$\iota$], .., Xn) от результатов наблюдений Xi, ..., Xn, в нек-ром смысле близкую к истинному значению параметра. Принимая к.-л. меру "близости" С. о. к значению оцениваемого параметра, можно сравнивать различные оценки по качеству. Обычно мерой близости оценки к истинному значению параметра служит величина среднего значения квадрата ошибки

(выражающаяся через математическое ожидание оценки Е[$\theta$][$\theta$]* и её дисперсию D[$\theta$]Q*). В классе всех несмещённых опенок (для к-рых E[$\theta$][$\theta$]* = [$\theta$]) наилучшими с этой точки зрения будут оценки, имеющие при заданном [$\eta$]минимальную возможную дисперсию _при всех [$\theta$]. Указанная выше оценка X для параметра а нормального распределения является наилучшей несмещённой оценкой, поскольку дисперсия любой другой несмещенной оценки а* параметра а удовлетворяет неравенству Daa* > DaX = [$\sigma$]2/п, где [$\sigma$]2 - дисперсия нормального распределения. Если существует несмещённая оценка с минимальной дисперсией, то можно найти и несмещённую наилучшую оценку в классе функций, зависящих только от достаточной статистики. Имея в виду построение С. о. для больших значений п, естественно предполагать, что вероятность отклонений [$\theta$]* от истинного значения параметра [$\theta$], превосходящих к.-л. заданное число, будет близка к нулю при n -> бескон.. С. о. с таким свойством называются состоятельными оценками. Несмещённые оценки, дисперсия к-рых стремится к нулю при n->бескон., являются состоятельными. Поскольку скорость стремления к пределу играет при этом важную роль, то асимптотич. сравнение С. о. производят по отношению их асимптотич. дисперсий. Так, среднее арифметическое X в приведённом выше примере - наилучшая и, следовательно, асимптотически наилучшая оценка для параметра а, тогда как выборочная медиана [$\mu$], представляющая собой также несмещённую оценку, не является асимптотически наилучшей, т. к.
[2433-12.jpg][2433-13.jpg]

(тем не менее использование [$\mu$] имеет также положительные стороны: напр., если истинное распределение не является в точности нормальным, а несколько отличается от него, дисперсия X может резко возрасти, а дисперсия [$\mu$] остаётся почти той же, т. е. [$\mu$] обладает свойством, наз. "прочностью"). Одним из распространённых общих методов получения С. о. является метод моментов, к-рый заключается в приравнивании определённого числа выборочных моментов к соответствующим моментам теоретич. распределения, к-рые суть функции от неизвестных параметров, и решении полученных уравнений относительно этих параметров. Хотя метод моментов удобен в практич. отношении, однако С. о., найденные при его использовании, вообще говоря, не являются асимптотически наилучшими. Более важным с теоретич. точки зрения представляется максимального правдоподобия метод, который приводит к оценкам, при некоторых общих условиях асимптотически наилучшим. Частным случаем последнего является наименьших квадратов метод. Метод С. о. существенно дополняется оцениванием с помощью доверительных границ.

Лит.: К е н д а л л M., СтьюартА., Статистические выводы и связи, пер. с англ., M., 1973; Крамер Г., Математические методы статистики, пер. с англ., 2 изд., M., 1975. А. В. Прохоров.


СТАТИСТИЧЕСКИЕ РАСЧЁТЫ, исчисление на основе имеющихся статистич. данных новых показателей, расширяющих и обогащающих возможности анализа и познания социально-экономич. явлений и процессов. С. р. можно подразделить на 2 группы: расчёты отд. показателей и комплексные расчёты систем показателей. К первой группе относятся: расчёты относит, показателей (напр., показателей выполнения плана, структуры совокупности, соотношения отд. её частей, динамики, сравнения и интенсивности развития); расчёты средних величин (напр., ср. заработной платы, ср. выработки на одного работающего, ср. урожайности и т. п.); исчисление отд. статистич. характеристик (напр., ср. ошибки выборки, дисперсии, вариационных коэффициентов); расчёты статистич. индексов; расчёты недостающих показателей на основе балансовых уравнений, интерполяции в рядах динамики; расчёты сводных показателей в социально-экономич. статистике (напр., совокупного общественного продукта, национального дохода и др.).

Вторую группу составляют комплексные С. р., воссоздающие какой-либо процесс или состояние социально-экономич. явления. В них применяются методы статистических группировок, построение индексных систем, теория корреляции и др. статистич. приёмы анализа. Непревзойдённые примеры глубоко научных С. р. содержатся в трудах В. И. Ленина. В работе " Развитие капитализма в России" на основе массового статистич. материала, собранного земской статистикой и научно обработанного Лениным с помощью метода группировок, доказано развитие капитализма в России: в пореформенной русской деревне происходил процесс классовой дифференциации, выделялись 3 различных социально-экономических типа крест. X-B: пролетарское и полупролетарское, живущие гл. обр. или наполовину продажей рабочей силы; середняцкие, источник существования к-рых - собственное мелкое X-BO, и зажиточные, эксплуатирующие наёмных рабочих. По расчётам В. И. Ленина, удельный вес этих типов крест. X-B в кон. 19 в. в России составлял соответственно 50, 30 и 20%. В этой же работе дан классич. пример С. р. социальной структуры населения России по материалам переписи населения в 1897 с использованием данных переписи населения 1890 в Петербурге и материалов земской статистики. В. И. Ленин установил, что численность пролетариата в России в 1897 составляла "...не менее 22-х миллионов" (Поли. собр. соч., 5 изд., т. 3, с. 505, прим.). В социалистическом х-ве С. р. находят применение в балансовых работах (см. Балансовый метод в планировании, Балансовый метод в статистике), прежде всего в расчётах, связанных с построением баланса народного хозяйства СССР, баланса основных фондов, финансового баланса, баланса трудовых ресурсов, баланса межотраслевого произ-ва и распределения обществ, продукта; при сопоставлении показателей между странами в меж-дунар. сравнениях; при исчислении различных сводных показателей и коэфф. и т. д. Большую группу