БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121ы газа, исходя из известных законов взаимодействия между молекулами. Уравнение Больцмана учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэфф. по плотности газа. Удалось найти и более точное уравнение, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.

Особую проблему представляет вывод кинетич. уравнения для плазмы. Из-за медленного убывания кулоновских сил с расстоянием даже при рассмотрении парных столкновений существенно экранирование этих сил остальными частицами.

Неравновесные состояния твёрдых тел и квантовых жидкостей можно при низких темп-pax рассматривать как неравновесные состояния газа соответствующих квазичастиц. Поэтому кинетич. процессы в таких системах описываются кинетич. уравнениями для квазичастиц, учитывающими столкновения между ними и процессы их взаимного превращения.

Новые возможности открыло применение в физ. кинетике методов квантовой теории поля. Кинетич. коэффициенты системы можно выразить через её функцию Грина, для к-рой существует общий способ вычисления с помощью диаграмм. Это позволяет в ряде случаев получить кинетич. коэффициенты без явного использования кинетич. уравнения и исследовать неравновесные свойства системы, даже когда не выполняются условия применимости кинетич. уравнения.


Основные вехи развития С. ф. С. ф. целиком основана на представлениях об атомном строении материи. Поэтому начальный период развития С. ф. совпадает с развитием атомистич. представлений (см. Атомизм). Развитие С. ф. как раздела теоретич. физики началось в сер. 19 в. В 1859 Дж. Максвелл определил функцию распределения молекул газа по скоростям. В 1860-70 P. Клаузиус ввёл понятие длины свободного пробега и связал её с вязкостью и теплопроводностью газа. Примерно в то же время Л. Болъцман обобщил распределение Максвелла на случай, когда газ находится во внеш. поле, доказал теорему о распределении энергии по степеням свободы, вывел кинетич. уравнение, дал статистич. истолкование энтропии и показал, что закон её возрастания является следствием кинетич. уравнения. Построение классической С. ф. было завершено к 1902 в работах Дж. Гиббса. Теория флуктуации была развита в 1905-06 в работах M. Смолуховского и А. Эйнштейна. В 1900 M. Планк вывел закон распределения энергии в спектре излучения чёрного тела, положив начало развитию как квантовой механики, так и квантовой С. ф. В 1924 Ш. Базе нашёл распределение по импульсам световых квантов и связал его с распределением Планка. А. Эйнштейн обобщил распределение Бозе на газы с заданным числом частиц. Э. Ферми в 1925 получил функцию распределения частиц, подчиняющихся принципу Паули, а П. A. M. Дирак установил связь этого распределения и распределения Бозе - Эйнштейна с математич. аппаратом квантовой механики. Дальнейшее развитие С. ф. в 20 в. шло под знаком приложения её основных принципов к исследованию конкретных проблем.

Лит.:
Классические труды: Б о л ь цм а н Л., Лекции по теории газов, пер. с нем., M., 1956; его же, Статьи н речи, [пер. с нем.], M., 1970; ГиббсДж. В., Основные принципы статистической механики, пер. с англ., М.- Л., 1946.
Учебники: Aнс е л ь м А. И., Основы статистической физики и термодинамики, M., 1973; Л е о н т о-вич M. А., Статистическая физика, M.- Л., 1944; Ландау Л. Д., Лифшиц E. M., Теоретическая физика, т. 5, 2 изд., M., 1964; Майер Дж., Гепперт"

M а и e p M., Статистическая механика, пер. с англ., M., 1952; К и т т е л ь Ч., Квантовая теория твердых тел, пер. с англ., M., 1967; X и л л Т., Статистическая механика. Принципы и избранные приложения, пер. с англ., M., 1960; Хуан г К., Статистическая механика, пер. с англ., M., 1966. Литература по специальным вопросам:
Абрикосов А. А., Горькое Л. П., Дзялошинский И. E., Методы квантовой теории поля в статистической физике, M., 1962; Боголюбов H. H., Проблемы динамической теории в статистической физике, М.-Л., 1946; Гуревич Л. Э., Основы физической кинетики, Л.- M., 1940; Силин В. П., Введение в кинетическую теорию газов, M., 1971; Физика простых жидкостей. Сб., пер. с англ., M., 1971. Л. П. Питаевский.


СТАТИСТИЧЕСКИЕ ГРУППИРОВКИ, метод группировок, метод обработки и анализа статистич. данных, при к-ром изучаемая совокупность явлений расчленяется на однородные по отд. признакам группы и подгруппы и каждая из них характеризуется системой статистич. показателей. Конкретное выражение С. г. находят в групповых и комбннац. таблицах (см. Таблицы статистические).

Метод группировок - гл. метод статистич. изучения обществ, явлений; служит предпосылкой для использования различных статистич. приёмов и методов анализа, напр, для использования различных обобщающих показателей, в т. ч. средних величин.

В дореволюц. рус. статистике, в особенности земской статистике, был накоплен богатейший опыт группировок различных объектов, довольно подробно разработаны групповые и комбинац. таблицы. Однако науч. обоснование теоретич. вопросов применения методов группировок получило только в трудах В. И. Ленина, к-рый высоко оценивал познават. ценность и практич. значимость метода группировок. О комбинац. таблицах Ленин писал: "Можно сказать без всякого преувеличения, что они внесли бы целый переворот в науку об экономике земледелия" (Поли. собр. соч., 5 изд., т. 24, с. 281). Принципиально важное значение имеют ленинские указания о предварит, политэкономич. анализе существа закономерностей и характеристике типов явлений до начала экспериментов с группировкой материалов исследования.

Кроме анализа структуры совокупности (см. Совокупность статистическая), метод группировок применяется при характеристике типов явлений и изучении взаимосвязей между различными признаками или факторами. Примерами С. г., выражающих структуру совокупности, служит группировка населения по возрастным группам (с годичными и, чаще, пятилетними интервалами), группировка предприятий по их размерам (табл. 1).

Укрупняя группы или устанавливая неравномерные интервалы, можно выяснить качеств, различия между отд. группами, а затем и определить техникоэкономич. или социально-экономич. типы объектов (предприятий, X-B). Так, в С. г. населения по возрасту, кроме простого хронологич. принципа, применяют специальные группы: женщины в возрасте 16-54 лет и мужчины в возрасте 16- 59 лет, в этом случае статистика имеет возможность перейти к вычислению нар.-хоз. показателя - трудовых ресурсов страны. Известная условность в определении границ интервалов (в различных

Табл. 1.- Группировка промышленных предприятий СССР по численности рабочих (1973, % к итогу)

Группы предприятий

Число предприятий

Валовая продукция

Среднегодовая численность пром. -производств, персонала

Среднегодовая стоимость пром. -производств, осн. фондов



Предприятия, состоящие на самостоятельном балансе (без электростанций, электросетей и теплосетей)

100

100

100

100



В том числе предприятия со среднегодовой численностью рабочих:











до 100

35,0

4,2

3,4

2,9



101-200

19,6

5,9

5,5

4,0



201-500

22,9

14,0

13,9

11,2



501-1000

11,3

14,4

14,9

13,2



1001-3000

8,4

25,9

26,6

25,8



3001-10000

2,5

24,0

24,1

26,5



10001 и более

0,3

11,6

11,6

16,4




странах они различаются между собой) не имеет принципиального значения. От детальной количеств, группировки предприятий и X-B можно перейти к выделению неск. осн. качеств, групп - мелкие, средние, крупные, а затем к выяснению ряда общих экономич. проблем, напр, процесса концентрации произ-ва и роста его эффективности, производительности труда. Блестящий пример глубокого анализа (проведённого с помощью С. г.) сложного характера закономерностей и связей между величиной х-ва и его интенсивностью и производительностью имеется в работе Ленина "Новые данные о законах развития капитализма в земледелии" (там же, т. 27, с. 129-227).

Наиболее сложная задача метода группировок заключается в выделении и развёрнутой характеристике типов (т. н. типологическая С. г.) социально-экономич. явлений, к-рые представляют собой выражение форм определ. обществ, процесса, существ, особенностей, общих для MH. единичных явлений. Ленин всесторонне, комплексно использовал метод группировок в своём анализе расслоения крестьянства, показав процесс формирования осн. классов в дореволюц. России, в зап.-европ