БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121оотношения находятся на основании правдоподобных физ. соображений и носят интерполяционный характер, так что основанные на них теории могут претендовать лишь на качеств, описание свойств жидкости. Тем не менее даже такое качеств, описание имеет важное значение, поскольку в нём проявляется общность законов С. ф. (см. также Жидкость).


Химическое равновесие. Большое значение имеет предоставляемая С. ф. возможность вычисления констант хим. равновесия, определяющих равновесные концентрации реагирующих веществ. Термодинамич. теория приводит к условию равновесия в виде равенства нулю нек-рой линейной комбинации хим. потенциалов этих веществ. В случае реакции между газами хим. потенциалы определяются формулами, аналогичными формуле (14) для одноатомного газа, и константу равновесия можно вычислить, если известна теплота реакции. В выражения для хим. потенциалов входит постоянная Планка, поэтому квантовые эффекты существенны даже для реакций между классич. газами. Важным частным случаем формул хим. равновесия является Саха формула, определяющая равновесную степень ионизации газа. (Подробнее см. Равновесие химическое.)

Вырожденные газы. Если понижать темп-ру газа при постоянной плотности, начинают проявляться квантовомеханические эффекты, связанные со свойствами симметрии волновых функций системы одинаковых частиц. Газ "вырождается" (см. Вырожденный газ). Для частиц с полуцелым спином волновая функция должна менять знак при перестановке любой пары частиц. Это, в частности, приводит к тому, что в одном квантовом состоянии не может находиться болвше одной частицы (Паули принцип). Количество частиц с целым спином в одном состоянии может быть любым, но требуемая в этом случае неизменность волновой функции при перестановке частиц и здесь приводит к изменению статистич. свойств газа. Частицы с полуцелым спином описываются статистикой Ферми - Дирака; их называют фермионами. К фермионам относятся, напр., электроны, протоны, нейтроны, атомы дейтерия, атомы лёгкого изотопа гелия 3He. Частицы с целым спином - бозоны - описываются статистикой Бозе - Эйнштейна. К ним относятся атомы водорода, атомы 4He, кванты света - фотоны.

Пусть ср. число частиц газа в единице объёма с импульсами, лежащими в интервале d3p, есть npgd3pl(2[$\pi$]h)3, так что пр - число частиц в одной ячейке фазового пространства (g = 2J + 1, где J - спин частицы). Тогда из распределения Гиббса следует, что для идеальных газов фермионов (верхний знак) и бозонов (нижний знак):
[2433-3.jpg]

В этой формуле [$\varepsilon$] = р2/2М - энергия частицы с импульсом [$\rho$], [$\mu$] - хим. потенциал, определяемый из условия постоянства числа частиц (N) в системе:
[2433-4.jpg]

Формула (19) переходит в формулу распределения Больцмана (12) при kT> (h2/M)(N/V)2/3; левая сторона этого неравенства делается порядка правой при таких темп-pax, при к-рых длина волны де Бройля частиц, движущихся с тепловой скоростью, становится порядка ср. расстояния между ними. T. о., вырождение сказывается при темп-pax тем более низких, чем меньше плотность числа частиц в газе (и чем больше масса частицы M).

В случае фермионов, как и должно быть, np<= 1. Это приводит к тому, что частицы газа фермионов (ферми-газа) и при T = О обладают отличными от нуля импульсами, поскольку в состоянии с нулевым импульсом может находиться только одна частица. Точнее, при T = Q для ферми-газа пр = 1 внутри Ферми поверхности - сферы в импульсном пространстве с радиусом pF =(6[$\pi$]2/g)1/3h(N/V)1/3 ,

а вне этой "ферми-сферы" пр = О. При конечных, но низких темп-pax прменяется от 1 внутри сферы до нуля вне сферы постепенно, причём ширина переходной области порядка MkT/pF. Величина прдля ферми-газа как функция от энергии [$\varepsilon$] изображена схематически на рис. 2 ([$\varepsilon$]0 = [$\rho$]F 2/2М). При изменении темп-ры газа меняется состояние частиц только в этом переходном слое, и теплоёмкость ферми-газа при низких темп-pax пропорциональна T и равна:
[2433-5.jpg]


Рис. 2. Функция распределения Ферми - Дирака.


В бозе-газе при T = O все частицы находятся в состоянии с нулевым импульсом. При достаточно низких темп-рах в состоянии с р = 0 находится конечная доля всех частиц; эти частицы образуют т. н. бозе-эйнштейновский конденсат. Остальные частицы находятся в состояниях с [$\rho$]<> O, причём их число определяется формулой (19) с [$\mu$] = О. При темп-ре

Tc = [(3,3/g2/3 )*(h/kM)] * (N/V)2/3в бозе-газе происходит фазовый переход (см. ниже). Доля частиц с нулевым импульсом обращается в нуль, Базе - Эйнштейна конденсация исчезает. Кривая зависимости теплоёмкости от темп-ры имеет в точке T0излом. Распределение частиц по импульсам при T > Тсдаётся формулой (19), причём [$\mu$] < О. Схематически функции распределения Максвелла, Ферми- Дирака и Бозе- Эйнштейна (приТ>Tс) изображены на рис. 3.

Рис. 3. Сравнение функций распределения Максвелла (M), Ферми-Дирака (Ф.- Д.) и Бозе - Эйнштейна (Б.- Э.). По оси ординат отложено число частиц на одно состояние с энергией [$\varepsilon$].

Особым случаем применения статистики Бозе - Эйнштейна является равновесное электромагнитное излучение, к-рое можно рассматривать как газ, состоящий из фотонов. Энергия фотона связана с его импульсом соотношением [$\varepsilon$] = h[$\omega$] = рс, где с - скорость света в вакууме. Число фотонов не является заданной величиной, а само определяется из условия термодинамич. равновесия, поэтому их распределение по импульсам даётся формулой (19) с [$\mu$] = О (причём [$\varepsilon$] = рс). Распределение энергии в спектре излучения получается умножением числа фотонов на энергию [$\varepsilon$], так что плотность энергии в интервале частот

d[$\omega$] равна пр (h[$\omega$]3d[$\omega$])/[$\pi$]2c3, причем пр берётся при [$\varepsilon$] = h[$\omega$]. T. о. получается формула Планка для спектра равновесного (чёрного) излучения (см. Планка закон излучения).

Кристаллическая решётка. Применение С. ф. к вычислению термодинамич. функций кристаллич. решётки основано на том, что атомы в решётке совершают малые колебания около своих положений равновесия. Это позволяет рассматривать решётку как совокупность связанных гармонич. осцилляторов. В такой системе могут распространяться волны, характеризующиеся своим законом дисперсии, т. е. зависимостью частоты [$\omega$] от волнового вектора k. B квантовой механике эти волны можно рассматривать как совокупность т. н. элементарных возбуждений, или квазичастиц, - фононов, обладающих энергией h[$\omega$] и квазиимпульсом hk. Осн. отличие квазиимпульса от импульса состоит в том, что энергия фонона является периодич. функцией квазиимпульса с периодом, по порядку величины равным h/a, где [$\alpha$] - постоянная решётки. Функция распределения фононов по квазиимпульсам даётся формулой распределения Бозе - Эйнштейна (19) с [$\mu$] = О. При этом [$\varepsilon$] = h?. T. о., знание зависимости [$\omega$](k) позволяет вычислить теплоёмкость решётки. Эту зависимость можно определить из опытов по неупругому рассеянию нейтронов в кристалле (см. Нейтронография) или вычислить теоретически, задавая значения "силовых констант", определяющих взаимодействие атомов в решётке. При низких темп-рах существенны только фононы с малой частотой, соответствующие квантам обычных звуковых волн, для к-рых связь (а с k линейна. Это приводит к тому, что теплоёмкость кристаллич. решётки пропорциональна T3. При высоких же темп-рах можно пользоваться законом равного распределения энергии по степеням свободы, так что теплоёмкость не зависит от темп-ры и равна 3Nk, где N - число атомов в кристалле.

Металлы. В металлах вклад в термодинамич. функции дают также электроны проводимости. Состояние электрона в металле характеризуется квазиимпульсом, и, т. к. электроны подчиняются статистике Ферми - Дирака, их распределение по киазиимпульсам даётся формулой (19). Поэтому теплоёмкость электронного газа, а следовательно, и всего металла при достаточно низких темп-рах пропорциональна T. Отличие от фермигаза свободных частиц состоит в том, что поверхность Ферми, около к-рой сосредоточены "активные" электроны, уже не является сферой, а представляет собой нек-рую сложную поверхность в пространстве квазиимпульсов. Форму поверхности Ферми, равно как и зависимость энергии от квазпимпульса вблизи этой поверхности, можно определять экспериментально, гл. обр. исследуя магнитные свойства металлов, а также рассчитывать теоретически, используя т. н. модель квазипотенциала. В сверхпроводниках (см. Сверхпроводимость) возбуждённые состояния электрона отделены от ферми-поверхности щелью конечной ширины, что приводит к экспрненц. зависимости электронной теплоёмкости от темп-ры. В ферромагнитных и антиферромагнитных веществах вклад в термодинамич. функции дают также колебания магнитных моментов - спиновые волны.

В диэлектриках и полупроводниках при T = О свободные электроны отсутствуют. При конечных темп-рах в них появляются заряж. квазичастицы - электроны с отрицат. зарядом и (в равном числе) "дырки" с положит, зарядом. Электрон и дырка могут образовать связанное состояние - квазичастицу, наз.