БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121>
выражения для свободной энергии и хим. потенциала содержат постоянную Планка h. Это, в конечном счёте, обусловлено отмеченной ранее связью энтропии с понятием числа квантовых состояний.

В случае двухатомных и многоатомных газов вклад в термодинамич. функции вносят также колебания и вращение молекул. Этот вклад зависит от того, существенны ли эффекты квантования колебаний и вращения молекулы. Расстояние между колебат. уровнями энергии имеет порядок [$\Delta$]Еk = h?, где [$\omega$] - характерная частота колебаний, а расстояние между первыми вращат. уровнями энергии порядка [$\Delta$]Ев = h2/2l, где l - момент инерции вращающегося тела, в данном случае молекулы. Классич. статистика справедлива, если темп-pa достаточно высока, так что

kT>[$\Delta$]E.

В этом случае в соответствии с законом равнораспределения вращение вносит в теплоёмкость постоянный вклад, равный 1/2k на каждую вращат. степень свободы; в частности, для двухатомных молекул этот вклад равен k. Колебания же вносят в теплоёмкость вклад, равный k на каждую колебат. степень свободы (так что колебат. теплоёмкость двухатомной молекулы равна k). Вдвое больший вклад колебательной степени свободы по сравнению с вращательной связан с тем, что при колебаниях атомы в молекуле имеют не только кинетическую, но и потенциальную энергию. В обратном предельном случае kТ
Рис. 1. Зависимость вращательной Свр(а) и колебательной Скол (б) частей теплоёмкости двухатомного газа (в единицах классических значений теплоёмкости) от температуры T.

В то же время характерные значения величины h[$\omega$]/k для "колебат. кванта" порядка тысяч градусов (6100 К для H2, 2700 К для O2, 4100 К для HCl). Поэтому вращат. степени свободы включаются при гораздо более низких темп-pax, чем колебательные. На рис. 1 изображены температурная зависимость вращательной (а) и колебательной (б) теплоёмкостей для двухатомной молекулы (вращат. теплоёмкость построена для молекулы из разных атомов).


Неидеальный газ. Важное достижение С. ф. - вычисление поправок к термодинамическим величинам газа, связанных с взаимодействием между его частицами. С этой точки зрения уравнение состояния идеального газа является первым членом разложения давления реального газа по степеням плотности числа частиц, поскольку всякий газ при достаточно малой плотности ведёт себя как идеальный. С повышением плотности начинают играть роль поправки к уравнению состояния, связанные с взаимодействием. Они приводят к появлению в выражении для давления членов с более высокими степенями плотности числа частиц, так что давление изображается т. н. вириальным рядом вида:
[2432-22.jpg]

Коэффициенты В, С и т. д. зависят от темп-ры и наз. вторым, третьим и т. д. вириальными коэффициентами. Методы С. ф. позволяют вычислить эти коэффициенты, если известен закон взаимодействия между молекулами газа. При этом коэффициенты В, С,... описывают одновременное взаимодействие двух, трёх и большего числа молекул. Напр., если газ одноатомный и потенциальная энергия взаимодействия его атомов U(r), то второй вириальный коэффициент равен
[2432-23.jpg]

По порядку величины В равен r0, где rо- характерный размер атома, пли, точнее, радиус действия межатомных сил. Это означает, что ряд (15) фактически представляет собой разложение по степеням безразмерного параметра Nr3/V, малого для достаточно разреженного газа. Взаимодействие между атомами газа носит характер отталкивания на близких расстояниях и притяжения па далёких. Это приводит к тому, что В > О при высоких темп-pax и В<0 при низких. Поэтому давление реального газа при высоких темп-pax больше давления идеального газа той же плотности, а при низких- меньше. Так, напр., для гелия при T = 15,3 К коэффициент В = = - 3*10-23см3, а при T = 510 К В = 1,8 *10"23 ел3. Для аргона B = = -7,1 *10-23 см3при T = 180 К и В = 4,2 *10-23см3 при T = 6000 К. Для одноатомных газов вычислены значения вириальных коэффициентов, включая пятый, что позволяет описывать поведение газов в достаточно широком интервале плотностей (см. также Газы).


Плазма. Особый случай неидеального газа представляет собой плазма - частично или полностью ионизованный газ, в к-ром поэтому имеются свободные электроны и ионы. При достаточно малой плотности свойства плазмы близки к свойствам идеального газа. При вычислении же

отклонений от идеальности существенно, что электроны и ионы взаимодействуют электростатически по закону Кулона. Кулоновские силы медленно убывают с расстоянием, и это приводит к тому, что уже для вычисления первой поправки к термодинамич. функциям необходимо учитывать взаимодействие не двух, а сразу большого количества частиц, поскольку интеграл во втором вириальном коэффициенте (16), описывающий парное взаимодействие, расходится на больших расстояниях г между частицами. В действительности под влиянием кулоновских сил распределение ионов и электронов в плазме изменяется таким образом, что поле каждой частицы экранируется, т. е. быстро убывает на нек-ром расстоянии, наз. дебаевским радиусом. Для простейшего случая плазмы, состоящей из электронов и однозарядных ионов, дебаевский радиус T0 равен:
[2432-24.jpg]

где N - число электронов, е - заряд электрона. Все частицы, находящиеся внутри дебаевского радиуса, принимают участие во взаимодействии одновременно. Это приводит к тому, что первая поправка к давлению пропорциональна не (N/V)2, как в обычном газе, а более низкой степени плотности - (N/V)3/2. Количественный расчёт основан на том, что остальные частицы распределены в поле выбранного электрона или иона согласно распределению Больцмана. В результате уравнение состояния с учётом первой поправки имеет вид:
[2432-25.jpg]

(т. к. число электронов равно числу ионов, полное число частиц равно 2N). Такого же рода поправки возникают и в термодинамич. функциях электролитов, в к-рых имеются свободные ионы растворённых веществ.


Жидкости. В отличие от газа, связанные с взаимодействием члены в уравнении состояния жидкости не малы. Поэтому свойства жидкости сильно зависят от конкретного характера взаимодействия между её молекулами. В теории жидкости вообще отсутствует малый параметр, к-рый можно было бы использовать для упрощения теории. Невозможно получить к.-л. аналитич. формулы для термодинамич. величин жидкости. Одним из способов преодоления этой трудности является изучение системы, состоящей из сравнительно небольшого числа частиц - порядка неск. тысяч. В этом случае, используя ЭВМ, можно провести прямое решение уравнений движения частиц и определить таким способом ср. значения всех характеризующих систему величин без дополнит, предположений. При этом можно исследовать также и процесс приближения такой системы к состоянию равновесия. Можно также найти статистич. интеграл для такой системы из небольшого числа частиц путём вычисления на ЭВМ интегралов в осн. формуле для статистич. интеграла (обычно при этом используется Монте-Карло метод). Полученные обоими способами результаты имеют, однако, малую точность в приложении к реальным жидкостям из-за малого числа частиц в системе.

Ещё один способ построения теории жидкости основан на использовании функций распределения молекул. Если проинтегрировать функцию распределения [$\omega$]системы по импульсам всех частиц и по координатам всех частиц, кроме одной, получится одночастичная пространств, функция распределения f1(r). Если проинтегрировать [$\omega$]по импульсам всех частиц и по координатам всех частиц, кроме двух, получится двухчастичная функция распределения f2(rt, г2), всех частиц, кроме трёх,- трёхчастичная функция распределения fз(r1, r2, r3) и т. д. Двухчастичная функция распределения является непосредственно наблюдаемой физ. величиной - через неё выражается, напр., упругое рассеяние рентгеновских лучей и нейтронов в жидкости. Считая, что функция распределения всей системы даётся распределением Гиббса (6), можно получить интегральное соотношение, выражающее двухчастичную функцию через трёхчастичную и потенциал взаимодействия между частицами. В теории жидкости это точное соотношение дополняется нек-рыми приближёнными, выражающими трёхчастичную функцию через двухчастичную (одночастичная функция в однородной жидкости сводится к постоянной). В результате получается уравнение для двухчастичной функции, к-рое решается численно. Дополнит, с