БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121еременных сокращённо будет обозначаться (p,q)]· Вычислим ср. значение по интервалу времени t нек-рой величины F (р, q), являющейся функцией этих координат и импульсов. Для этого разобьём интервал (О, [$\tau$]) на s равных малых отрезков [$\Delta$]t0(а = 1,2,... .... s). Тогда по определению
[2432-4.jpg][2432-5.jpg]

где qa и рa - значения координат и импульсов в моменты времени ta. B пределе s-> бесконеч. сумма переходит в интеграл:
[2432-6.jpg]

Понятие функции распределения ес-теств. образом возникает, если рассмотреть пространство 6N измерений, на осях к-рого отложены значения координат и импульсов частиц системы; оно наз. фазовым пространством. Каждому значению времени ? соответствуют определённые значения всех q к р, т. е. нек-рая точка в фазовом пространстве, изображающая состояние системы в данный момент времени t. Разобьём всё фазовое пространство на элементы, размер к-рых мал по сравнению с характерными для данного состояния системы значениями q и р, но ещё настолько велик, что в каждом из них находится много точек, изображающих состояние системы в различные моменты времени t. Тогда число таких точек в элементе объёма будет примерно пропорционально величине этого объёма dpdq. Если обозначить коэффициент пропорциональности через sw(p, q), то это число для элемента с центром в нек-рой точке (р, q) запишется в виде:
[2432-7.jpg]



где dpdq = dp1dq1dp2dq2...dp3Ndq3N- объём выбранного элемента фазового пространства. Cp. значение (1) с учётом малости этих элементов объёма можно

переписать как F= (1/s) интегралFda, т.е.
[2432-8.jpg]

(интегрирование по координатам производится по всему объёму системы, по импульсам - от -беск. до +беск.). функция w(p, q, t) носит название функции распределения по координатам и импульсам частиц. Поскольку полное число выбранных точек равно s, функция w удовлетворяет условию нормировки:
[2432-9.jpg]

Из (3) и (4) видно, что wdpdq можно рассматривать как вероятность системе находиться в элементе dpdq фазового пространства.

Введённой таким образом функции распределения можно дать и др. истолкование. Для этого будем рассматривать одновременно большое число одинаковых систем и примем, что каждая точка в фазовом пространстве изображает состояние одной такой системы. Тогда усреднение по времени в (1) - (1a) можно понимать как усреднение по совокупности этих систем, или, как говорят, по статистическому ансамблю.

Проведённые до сих пор рассуждения носили чисто формальный характер, т. к. нахождение функции распределения, согласно (2), требует знания всех р и q во все моменты времени, т. е. решения уравнений движения с соответствующими начальными условиями. Осн. положением С. ф. является, однако, утверждение о возможности определить эту функцию из общих соображений для системы, находящейся в состоянии термодинамич. равновесия. Прежде всего можно показать, исходя из сохранения числа систем при движении, что функция распределения является интегралом движения системы, т. е. остаётся постоянной, если р и q меняются в соответствии с уравнениями движения (см. Лиувилля теорема).

При движении замкнутой системы не меняется её энергия, поэтому все точки в фазовом пространстве, изображающие состояние системы в разные моменты времени, должны лежать на нек-рой "гиперповерхности", соответствующей начальному значению энергии E. Уравнение этой поверхности имеет вид: Н(р, q) = Е, где H (р, q) - энергия системы, выраженная через координаты и импульсы, т. е. её функция Гамильтона. Далее, движение системы из многих частиц носит крайне запутанный характер. Поэтому с течением времени точки, описывающие состояние, распределятся по поверхности постоянной энергии равномерно, подобно тому как равномерно распределяются зёрна при перемешивании в сосуде в упомянутом выше примере (см. также Эргодическая гипотеза). Такое равномерное распределение по изоэнергетич. поверхности описывается функцией распределения вида:

w(p,q) = A[$\delta$][H(p,q)-E], (5) где [$\delta$][Н (р, q) - E] - дельта-функция, отличная от нуля только при H=E, т. е. на этой поверхности, А - постоянная, определяемая из условия нормировки (4). Функция распределения (5), наз. микроканонической, позволяет вычислять ср. значения всех физ. величин по формуле (3), не решая уравнений движения.

При выводе выражения (5) предполагалось, что единственная сохраняющаяся при движении системы величина, от к-рой зависит w,- это энергия системы. Разумеется, сохраняются также импульс и момент импульса, но эти величины можно исключить, предположив, что рассматриваемое тело заключено в неподвижный ящик, к-рому частицы могут отдавать импульс и момент.

Фактически обычно рассматриваются не замкнутые системы, а макроскопич. тела, являющиеся макроскопически малыми частями, или подсистемами, к.-л. замкнутой системы. Функция распределения для подсистемы будет отлична от (5), но не будет зависеть от конкретного характера остальной части системы - т. н. термостата. Поэтому функцию распределения подсистемы можно определить, считая, напр., что термостат состоит просто из N частиц идеального газа, координаты и импульсы к-рых будем обозначать через Q и P, в отличие от обозначений q и р для подсистемы, тогда микроканонич. распределение:
[2432-10.jpg]

Здесь H (р, q) - функция Гамильтона подсистемы, M - масса частицы газа, а суммирование производится по всем составляющим импульсов всех частиц термостата. Чтобы найти функцию распределения для подсистемы, нужно проинтегрировать это выражение по координатам и импульсам частиц термостата. Если затем учесть, что число частиц в термостате много больше, чем в подсистеме, и устремить N -> беск. , считая, что отношение E/N постоянно и равно 3/2 kГ, то для функции распределения подсистемы получится выражение:

w(p, q) = е[F-H(p,q)]/kT.(6)

Величина T в этой формуле имеет смысл темп-ры, k = 1,38 ·10~16 эрг/град - постоянная Больцмана. [Условие E/F -> 3/2 kT для газа в термостате соответствует, как и должно быть, формуле (13) для идеального газа; см. ниже.] Нормировочный коэффициент eF/KTопределяется из условия нормировки (4):
[2432-11.jpg]

Распределение (6) наз. каноническим распределением Гиббса, или просто каноническим распределением (см Гиббса распределение), а величина Z - статистич. интегралом. В отличие от микроканонич. распределения, энергия системы в распределении Гиббса не задана. Состояния системы сосредоточены в тонком, но конечной толщины слое вокруг энергетич. поверхности, соответствующей ср. значению энергии, что означает возможность обмена энергией с термостатом. В остальном в применении к определённому макроскопич. телу оба распределения приводят по существу к одним и тем же результатам. Разница лишь в том, что при использовании микроканонич. распределения все ср. значения оказываются выраженными через энергию тела, а при использовании канонич. распределения - через темп-ру.

Если тело состоит из двух невзаимодействующих частей 1 н 2 с функциями Гамильтона H1н H2, то для всего тела H = H1 + Н2и, согласно (6), функция распределения тела разбивается на произведение функций распределения для каждой из частей, так что эти части оказываются статистически независимыми. Это требование вместе с теоремой Лиувилля можно положить в основу вывода распределения Гиббса, не обращаясь к микроканонич. распределению.

Формула (6) справедлива для систем, к-рые описываются классич. механикой.

В квантовой механике энергетич. спектр системы конечного объёма дискретен. Вероятность подсистеме находиться в состоянии с энергией En даётся формулой, аналогичной (6):
[2432-12.jpg]

причём условие нормировки [$\Sigma$]nwn= 1 можно переписать в виде:
[2432-13.jpg]

Величина Z наз. статистической суммой системы; сумма в выражении (8) берётся по всем состояниям системы. Для системы, с достаточной точностью описывающейся классич. механикой, в формуле (8) можно перейти от суммирования по состояниям к интегрированию по координатам и импульсам системы. При этом на каждое квантовое состояние приходится в фазовом пространстве "клетка" (или "ячейка") объемом (2[$\pi$]h)3N, где h -Планка постоянная. Иными словами, суммирование по [$\eta$]сводится к интегрированию по dpdq/(2[$\pi$]h)3N. Следует также учесть, что ввиду тождественности частиц в квантовой механике при их перестановке состояние системы не меняется. Поэтому, если интегрировать по всем [$\rho$]и q, необходимо поделить интеграл на число перестановок из N частиц, т. е. на N Окончательно классич. предел для статистич. суммы имеет вид:
[2432-14.jpg]

Он отличается множителем от чисто классич. условия нормировки (6а), что приводит к дополнит, слагаемому в F.

Приведённые формулы относятся к случаю, когда число частиц в подсистеме задано. Если выбрать в качестве подсистемы определённый элемент объёма всей системы, через поверхность к-рого частицы могут покидать подсистему и возвращаться в неё, то вероятность нахождения подсистемы в состоянии с энергией En и числом частиц Nn даётся формулой большого канонического распределения