БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121нной на классе простых альтернатив, составляющих H, т. е. будет функцией параметра. Критерий, имеющий наибольшую мощность при каждой альтернативной гипотезе из класса H, наз. равномерно наиболее мощным, однако следует отметить, что такой критерий существует лишь в немногих спец. ситуациях. В задаче проверки гипотезы о среднем значении нормальной совокупности а = ао против альтернативной гипотезы а > а0 равномерно наиболее мощный критерий существует, тогда как при проверке той же гипотезы против альтернативы a <> аоего нет. Поэтому часто ограничиваются поиском равномерно наиболее мощных критериев в тех или иных спец. классах (инвариантных, несмещённых критериев и т. п.).

Теория С. п. г. позволяет с единой точки зрения трактовать выдвигаемые практикой различные задачи математич. статистики (оценка различия между средними значениями, проверка гипотезы постоянства дисперсии, проверка гипотезы независимости, проверка гипотез о распределениях и т. п.). Идеи последовательного анализа, применённые к С. п. г., указывают на возможность связать решение о принятии или отклонении гипотезы с результатами последовательно проводимых наблюдений (в этом случае число наблюдений, на основе к-рых по определённому правилу принимается решение, не фиксируется заранее, а определяется в ходе эксперимента) (см. также Статистические решения).

Лит.: Крамер Г., Математические методы статистики, пер. с англ.,2 изд., M., 1975; Л е м а и Э., Проверка статистических гипотез, пер. с англ., M., 1964.

А. В. Прохоров.


СТАТИСТИЧЕСКАЯ РАДИОФИЗИКА, раздел радиофизики, посвящённый изучению флуктуационных явлений при генерации, излучении, распространении и приёме радиоволн. В более широком смысле С. р. охватывает исследования стати стич. закономерностей в колебательных и волновых процессах (когерентность, проблемы взаимодействия сигналов и шумов в нелинейных системах и т. п.). Практич. значение С. р. связано с тем, что в системах радиолокации, радионавигации, радиосвязи и др. флуктуации играют важную и во многих случаях определяющую роль на осн. этапах передачи информации.

Электрич. флуктуации, обусловленные фундаментальными физич. процессами в веществе, являются причиной возникновения флуктуационных напряжений и токов в радиоприёмных устройствах (см. Флуктуации электрические). Флуктуацпонные токи и напряжения, неизбежные в реальных генераторах колебаний, определяют предельно достижимые монохроматичность и стабильность частоты генератора радиопередающих устройств. Флуктуационные явления при распространении радиоволн в атмосфере связаны с тем, что показатель преломления тропосферы и 'ионосферы испытывает нерегулярные изменения, носящие флуктуационный характер. Идеи и методы С. р. проникают в оптику.

Лит.: P ы т о в С. M., Введение в статистическую радиофизику, M-, 1966; В а ндер-Зил А., Флуктуации в радиотехнике и физике, пер. с англ., M., 1958; Малахов A. H., Флуктуации в автоколебательных системах, M., 1968; Татарс к и и В. И., Распространение волн в турбулентной атмосфере, M., 1967.

С. А. Ахманов.


СТАТИСТИЧЕСКАЯ CУMMA, величина, обратная нормирующему множителю канонического Гиббса распределения в квантовой статистической физике. В классич. статистич. физике такая величина наз. статистическим интегралом. С. с. (статистич. интеграл) позволяет вычислить все потенциалы термодинамические.


СТАТИСТИЧЕСКАЯ ТЕРМОДИНАИKA равновесная, раздел статистической физики, дающий статистическое обоснование законов термодинамики на основе статистич. механики Дж. У. Гиббса и посвящённый вычислениям термодинамич. характеристик системы (потенциалы термодинамические, уравнение состояния) на основе законов взаимодействия составляющих систему частиц. Неравновесная С. т. даёт статистич. обоснование термодинамики неравновесных процессов (уравнений переноса энергии, импульса, массы) и позволяет получить выражения для входящих в уравнения коэффициентов (кинетич. коэфф., или коэфф. переноса) на основе законов взаимодействия и движения частиц системы.


СТАТИСТИЧЕСКАЯ ФИЗИКА, раздел физики, задача к-рого-выразить свойства макроскопич. тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т. д.), через свойства этих частиц и взаимодействие между ними.

Изучением макроскопич. тел занимаются и др. разделы физики - термодинамика, механика сплошных сред, электродинамика сплошных сред. Однако при решении конкретных задач методами этих дисциплин в соответствующие уравнения всегда входят неизвестные параметры или функции, характеризующие данное тело. Так, для решения задач гидродинамики необходимо знать уравнение состояния жидкости или газа, т. е. зависимость плотности от темп-ры и давления, теплоёмкость жидкости, её коэфф. вязкости и т. п. Все эти зависимости и параметры можно, разумеется, определять экспериментально, поэтому методы, о к-рых идёт речь, наз. феноменологическими. Статистическая же физика позволяет, по крайней мере в принципе, а во многих случаях и фактически, вычислить все эти величины, если известны силы взаимодействия между молекулами. T. о., С. ф. использует сведения о "микроскопическом" строении тел - о том, из каких частиц они состоят, как эти частицы взаимодействуют, поэтому её называют микроскопической теорией.

Если в какой-то момент времени заданы координаты и скорости всех частиц тела и известен закон их взаимодействия, то, решая уравнения механики, можно было бы найти эти координаты и скорости в любой последующий момент времени и тем самым полностью определить состояние исследуемого тела. (Для простоты изложение ведётся на языке классич. механики. Но и в квантовой механике ситуация та же: зная начальную волновую функцию системы и закон взаимодействия частиц, можно, решая Шрёдингера уравнение, найти волновую функцию, определяющую состояние системы во все будущие моменты времени.) Фактически, однако, такой путь построения микроскопич. теории невозможен, т. к. число частиц в макроскопич. телах очень велико. Напр., в 1 см3 газа при темп-ре О 0C и давлении в 1 атм содержится примерно 2,7 ·1019 молекул. Невозможно решить такое число уравнений, а начальные координаты и скорости всех молекул всё равно неизвестны.

Однако именно большое число частиц в макроскопич. телах приводит к появлению новых - статистических -закономерностей в поведении таких тел. Это поведение в широких пределах не зависит от конкретных начальных условий - от точных значений начальных координат и скоростей частиц. Важнейшее проявление этой независимости - известный из опыта факт, что система, предоставленная самой себе, т. е. изолированная от внеш. воздействий, с течением времени приходит в нек-рое равновесное состояние (термодинамическое, или статистическое, равновесие), свойства к-рого определяются только такими общими характеристиками начального состояния, как число частиц, их суммарная энергия и т. п. (см. Равновесие термодинамическое). В дальнейшем речь будет идти главным образом о С. ф. равновесных состояний.

Прежде чем сформулировать теорию, описывающую статистич. закономерности, следует разумно ограничить сами требования к теории. Именно, задачей теории должно являться вычисление не точных значений различных физ. величин для макроскопич. тел, а ср. значений этих величин по времени. Рассмотрим, напр., молекулы, находящиеся в нек-ром выделенном в газе достаточно большом - макроскопическом - объёме. Число таких молекул с течением времени будет меняться из-за их движения, и его можно было бы найти точно, если были бы известны все координаты молекул во все моменты времени. В этом, однако, нет необходимости. Изменение числа молекул в объёме будет носить характер беспорядочных колебаний - флуктуации - относительно нек-рого ср. значения. При большом числе частиц в объёме эти колебания будут малы по сравнению со ср. числом частиц, так что для характеристики макроскопич. состояния достаточно знать именно это ср. значение.

Для уяснения характера статистич. закономерностей рассмотрим ещё один простой пример. Пусть в нек-рый сосуд помещено большое число зёрен двух сортов, каждого сорта поровну, и содержимое сосуда тщательно перемешано. Тогда на основании повседневного опыта можно быть уверенным, что во взятой из сосуда пробе, содержащей всё ещё большое число зёрен, будет обнаружено примерно равное число зёрен каждого сорта независимо от того, в каком порядке засыпались зёрна в сосуд. На этом примере хорошо видны два важных обстоятельства, обеспечивающих применимость статистич. теории. Во первых, необходимость большого числа зёрен как во всей "системе" - сосуде с зерном, так и в выбранной для опыта "подсистеме" - пробе. (Если Проба состоит всего из двух зёрен, то нередко оба будут одного сорта.) Во-вторых, ясно, что существ, роль играет сложность движения зёрен при перемешивании, обеспечивающая их равномерное распределение в объёме сосуда.
Функция распределения. Рассмотрим систему, состоящую из N частиц, для простоты считая, что частицы не имеют внутр. степеней свободы. Такая система описывается заданием 6N переменных - 3N координат q1 и 3N импульсов PI частиц [совокупность этих п