БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121 ф. играет при съемке поверхности Земли и планет с космических летательных аппаратов и искусственные спутников Земли (см. также Космическая съемка). Кроме того, С. ф. начинают использовать при микрофотосъемке биологич. объектов и шлифов минералов, содержащих вкрапления. Исследуются возможности С. ф. в рентгеновских лучах на обычных трехслойных цветофотографич. материалах; при этом различиям цвета изображения соответствуют разные глубины проникновения излучения (через один, два или три эмульсионных слоя соответственно), а следовательно, и разное ослабление излучения рентгенографируемым объектом. Лит см при ст. Спектрозоналъная аэро-фотосъемка А Л Картужанский.


СПЕКТРОКОМПАРАТОР, см. Компаратор.


СПЕКТРОМЕТР (от спектр и ...метр), в широком смысле - устройство для измерений функции распределения нек-рой физ. величины f по параметру х. Функция f(x) может определять распределение электронов по скоростям (бета-спектрометр), атомов по массам (масс-спектрометр), гамма-квантов по энергиям (гамма-спектрометр), энергии световых потоков по длинам волн [$\lambda$] (оптич. спектрометр) и т. п. В узком смысле С. наз. спектральные приборы для измерений оптич. спектров f([$\lambda$]) с помощью фотоэлектрич. приемников излучения.

СПЕКТРОМЕТРИЯ (от спектр и...метрия), научная дисциплина, разрабатывающая теорию и методы измерений спектров. В оптическом диапазоне длин волн С. объединяет разделы прикладной спектроскопии, метрологии и теории линейных систем. С. служит для обоснования выбора принципиальных схем спектральных приборов и оптимизации методов расчета.

Лит ХаркевичА А, Спектры и анализ, М.- Л , 1952, Хургин Я. И, Яковлев В. П, Финитные функции в физике и технике, M , 1971


СПЕКТРОСЕНСИТОМЕТР, прибор, сообщающий фотоматериалу строго дозированные и меняющиеся по определенному закону экспозиции в монохроматическом свете. Получаемые т. о. с п е к тросенситограммы измеряют на денситометре и используют для построения семейств монохроматических характеристических кривых и т. н. кривых спектральной чувствительности (см. Сен-Оптическая схема спектросенситометра ИСП-73: / - источник света (ленточная лампа накаливания); 2 - двухлинзовый конденсор; 3 - дисковый затвор с выдержками 0,05, 0,2 и 1,0 сек; 4 - револьверный диск с набором дырчатых диафрагм; 5 - входная щель спектрографа; 6 - объектив коллиматора; 7 - призмы; 8 - объектив камеры спектрографа.

ситометрия). В отличие от сенситометра, С. включает спектрограф, разлагающий излучение источника света в спектр. Спектральную чувствительность фотоматериалов в видимом и близком инфракрасном диапазонах длин волн определяют С. со спектральными призмами из стекла, а для ультрафиолетового (УФ) диапазона призмы изготовляют из кварца. В СССР для спектросенситометрич. испытаний чёрно-белых фотоматериалов (ГОСТ 2818-45) используют С. типа ИСП-73 (рис.) в видимом диапазоне и типа ФСР-9 в УФ диапазоне.

СПЕКТРОСКОПИИ ИНСТИТУТ Академии наук СССР (ИСАИ), н.-и. учреждение, в котором ведутся работы по оптической спектроскопии. Создан в 1968 в Академгородке Подольского р-на Моск. обл. на базе лаборатории Комиссии по спектроскопии АН СССР. Осн. направления - атомная спектроскопия, молекулярная спектроскопия, спектроскопия твёрдого тела, лазерная спектроскопия, спектральное приборостроение. Выполнены исследования (1975) по спектроскопии высокоионизованных атомов и электронных переходов сложных молекул, нелинейной спектроскопии высокого разрешения, разработаны физ. основы лазерных методов разделения изотопов и получения сверхчистых веществ, созданы новые методики спектрального анализа хим. состава и строения вещества.


СПЕКТРОСКОПИЯ (от спектр и ... скопил"), раздел физики, посвящённый изучению спектров электромагнитного излучения. Методами С. исследуют уровни энергии атомов, молекул и образованных из них макроскопич. систем и квантовые переходы между уровнями энергии, что даёт важную информацию о строении и свойствах вещества. Важнейшие области применения С.- спектральный анализ и астрофизика.

Возникновение С. можно отнести к 1666, когда И. Ньютон впервые разложил солнечный свет в спектр. Важнейшие этапы дальнейшего развития С.- открытие и исследование в нач. 19 в. линий поглощения в солнечном спектре (фраунгоферовых линии), установление связи спектров испускания и поглощения (Г. P. Кирхгоф и P. Бунзен, 1859) и возникновение на её основе спектрального анализа. С его помощью впервые удалось определить состав астрономич. объектов - Солнца, звёзд, туманностей. Во 2-й пол. 19 - нач. 20 вв. С. продолжала развиваться как эмпирич. наука, был накоплен огромный материал об оптич. спектрах атомов и молекул, установлены закономерности в расположении спектральных линий и полос. В 1913 H. Бор объяснил эти закономерности на основе квантовой теории, согласно к-рой спектры электромагнитного излучения возникают при квантовых переходах между уровнями энергии атомных систем в соответствии с постулатами Бора (см. Атомная физика). В дальнейшем С. сыграла большую роль в создании квантовой механики и квантовой электродинамики, к-рые, в свою очередь, стали теоретич. базой совр. С.

Деление С. может быть произведено по различным признакам. По диапазонам длин волн (или частот) электромагнитных волн в С. выделяют радиоспектроскопию, охватывающую всю область радиоволн; оптич. С., изучающую спектры оптические и содержащую инфракрасную спектроскопию, С. видимого излучения и ультрафиолетовую спектроскопию, рентгеновскую спектроскопию и гамма-спектроскопию. Специфика каждого из этих разделов С. основана на особенностях электромагнитных волн соответствующего диапазона и методах их получения и исследования: в радиоспектроскопии применяются радиотехнические методы, в рентгеновской - методы получения и исследования рентгеновских лучей, в гамма-спектроскопии - экспериментальные методы ядерной физики, в оптич. С.- оптич. методы в сочетании с методами совр. радиоэлектроники. Часто под С. понимают лишь оптич. С.

В соответствии с различием конкретных экспериментальных методов выделяют отдельные разделы С. В оптич. С.- интерференционную С., основанную на использовании интерференции и применении интерферометров, вакуумную спектроскопию, Фурье-спектроскопию, спектроскопию лазерную, основанную на применении лазеров. Одним из разделов ультрафиолетовой и рентгеновской С. является фотоэлектронная спектроскопия, основанная на анализе энергий электронов, вырываемых из вещества при поглощении ультрафиолетовых и рентгеновских фотонов.

По типам исследуемых систем С. разделяют на атомную, изучающую атомные спектры, молекулярную, изучающую молекулярные спектры, С. веществ в конденсированном состоянии (в частности, спектроскопию кристаллов). В соответствии с видами движения в молекуле (электронное, колебательное, вращательное) молекулярную С. делят на электронную, колебательную и вращательную С. Аналогично различают электронную и колебательную С. кристаллов. В С. атомов, молекул и кристаллов применяют методы оптич. С., рентгеновской С. и радиоспектроскопии .

Особую область исследований представляет ядерная спектроскопия, в к-рую включают гамма-, альфа- и бетаспектроскопии; из них только гамма-спектроскопия относится к С. электромагнитного излучения.

Лит.: Ельяшевич M. А., Атомная и молекулярная спектроскопия, M., 1962; Герцберг Г., Спектры и строение простых свободных радикалов, пер. с англ., M., 1974. См. также лит. при статьях Инфракрасная спектроскопия, Комбинационное рассеяние света, Ультрафиолетовое излучение, Спектроскопия кристаллов, Рентгеновская спектроскопия, Гамма-спектроскопия, Атомные спектры, Молекулярные спектры. M. А. Ельяшевич.

СПЕКТРОСКОПИЯ КРИСТАЛЛОВ, раздел спектроскопии, посвящённый изучению квантовых переходов в системе уровней энергии кристаллич. тел и сопутствующих им физ. явлений. С. к.- важный источник информации о свойствах и строении кристаллов. Её теоретической основой является квантовая теория твёрдого тела. В С. к. широко используется теория групп, к-рая позволяет учесть свойства симметрии кристаллов, т. е. установить симметрию волновых функций для энергетических уровней и найти отбора правила для разрешённых переходов между ними. Для С. к. характерно разнообразие экспериментальных методов, включающих использование низких темп-р, лазеров (как источников возбуждения), фотоэлектрич. счёта фотонов,, модуляционных методов регистрации спектров (см. Спектральные приборы) синхротронного излучения и т. д.

Многообразие в кристалле частиц и квазичастиц с сильно различающимися характерными энергиями обусловливает поглощение и испускание квантов электромагнитной энергии в широком диапазоне частот от радиоволн до [$\gamma$]-излучения. Малые кванты энергии связаны в, основном с магнитными взаимодействиями частиц и изучаются радиоспектроскопическими методами (см. Радиоспектроскопия). Рентгеновская спектроскопия изучает переходы электронов на внутр. оболочки атомов и ионов, образующих кристалл. Гамма-излучение связано с переходами между ядерными уровнями. Однако обычно под С. к. понимают оптич. спектроскопию, охватывающую диапазон электромагнитных волн от д