БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121азмы разряда.

Рис. 3. Схема генератора конденсированной искры с управляющим промежутком: АП - регулируемый аналитический промежуток, образованный ванадиевыми электродами; R1 - реостат; Tp - питающий трансформатор; С - конденсатор; L -катушка индуктивности; П- управляющий промежуток; R2 - блокирующее сопротивление.

Чтобы устранить это явление, приходится производить предварит, обжиг проб и нормировать форму и размеры проб и стандартных образцов.

В АСА перспективно применение стабилизированных форм электрич. разряда типа плазмотронов различных конструкций, высокочастотного индукционного разряда, СВЧ-разряда, создаваемого магнетронными генераторами, высокочастотного факельного разряда. С помощью различных приёмов введения анализируемых веществ в плазму этих типов разряда (продувка порошков, распыление растворов и т. д.) значительно повышена относит, точность анализа (до 0,5-3% ), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых веществ применение этих типов разряда снижает пределы определения примесей на 1-2 порядка (до 10-5- 10-6 % ).

Для анализа чистых веществ, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в металлах и твёрдых веществах и т. д. весьма перспективным оказалось использование разряда в полом катоде и безэлектродных ВЧ-и СВЧ-разрядов. В АСА в качестве источников возбуждения применяются также лазеры (см. Спектроскопия лазерная).


Атомно-абсорбционяый С. a. (AAA) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу превращают в пар в атомизаторе (пламени, графитовой трубке, плазме стабилизированного ВЧ-или СВЧ-разряда). В AAA свет от источника дискретного излучения, проходя через этот пар, ослабляется и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. AAA проводят на спец. спектрофотометрах. Методика проведения AAA по сравнению с др. методами значит, проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. AAA с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности .

В АФА атомные пары пробы облучают светом источника резонансного излучения и регистрируют флуоресценцию определяемого элемента. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы их обнаружения этим методом весьма малы (~10-5- 106 % ).

АСА позволяет проводить измерения изотопного состава. Нек-рые элементы имеют спектральные линии с хорошо разрешённой структурой (напр., H, Не, U). Изотопный состав этих элементов можно измерять на обычных спектральных приборах с помощью источников света, дающих тонкие спектральные линии (полый катод, безэлектродные ВЧ-и СВЧ-лампы). Для проведения изотопного спектрального анализа большинства элементов требуются приборы высокой разрешающей способности (напр., эталон фабри - Перо). Изотопный спектральный анализ можно также проводить по электронно-колебательным спектрам молекул, измеряя изотопные сдвиги полос, достигающие в ряде случаев значит, величины.

Экспрессные методы АСА широко применяются в пром-стп, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит, роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3/4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологич. разведке для оценки месторождений производят ок. 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при разделении изотопов и определении возраста и состава геологич. и археологич. объектов и т. д. Лит.: 3 а и д е л ь A. H., Основы спектрального анализа, M., 1965; Методы спектрального анализа, M., 1962; Эмиссионный спектральный анализ атомных материалов, Л.- M., 1960; Русанов А. К., Основы количественного спектрального анализа руд и минералов, M., 1971; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, [Л.], 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, M., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич H. И., С е м е н е н-к о К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, M., 1973; Прокофьев В. К., Фотографические методы количественного спектрального анализа металлов и сплавов, ч. 1 - 2, M.- Л., 1951; МенкеГ., M е нке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., M., 1968; Кор о л ев H. В., P ю х и н В. В., Горбунов С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 3 изд., M., 1969; Стриганов А. Р., Свентицкий H. С., Таблицы спектральных линий нейтральных и ионизованных атомов, M-, 1966.

Л. В. Липис.


Молекулярный спектральный анализ (MCA)

В основе MCA лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный MCA. В MCA используют различные виды молекулярных спектров: вращательные [спектры в микроволновой и длинноволновой инфракрасной (ИК) областях], колебательные и колебательно-вращательные [спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (KPC), спектры ИК-флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные [спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции]. MCA позволяет проводить анализ малых количеств (в нек-рых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.

Осн. факторы, определяющие возможности методов MCA:

1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определённом интервале длин волн или частот исследуемого диапазона (для микроволнового диапазона оно ~ 105, для средней ИК-области в спектрах твёрдых и жидких веществ ~103);

2) количество измеренных спектров индивидуальных соединений;

3) существование общих закономерностей между спектром вещества и его молекулярным строением;

4) чувствительность и избирательность метода;

5) универсальность метода;

6) простота и доступность измерений спектров.

Качественный MCA устанавливает молекулярный состав исследуемого образца. Спектр молекулы является его однозначной характеристикой. Наиболее специфичны спектры веществ в газообразном состоянии с разрешённой вращательной структурой, к-рые исследуют с помощью спектральных приборов высокой разрешающей способности. Наиболее широко используют спектры ИК-поглощения и KPC веществ в жидком и твёрдом состояниях, а также спектры поглощения в видимой и УФ-областях. Широкому внедрению метода KPC способствовало применение для их возбуждения лазерного излучения.

Для повышения эффективности MCA в нек-рых случаях измерение спектров комбинируют с др. методами идентификации веществ. Так, всё большее распространение получает сочетание хроматографич. разделения смесей веществ с измерением ИК-спектров поглощения выделенных компонент.

К качественному MCA относится также т. н. структурный молекулярный анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания общие черты. Наиболее ярко это проявляется в колебательных спектрах. Так, наличие сульфгидрильной группы (-SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565-2575 см-1, нитрильная группа (-CN) характеризуется полосой 2200-2300 см-1и т. д. Присутствие таких характеристических полосв колебательных спектрах веществ с общими структурными элементами объясняется характеристичностью частоты и формы MH. молекулярных колебаний. Подобные особенности колебательных (и в меньшей степени электронных) спектров во MH. случаях позволяют определять структурный тип вещества.

Качественный анализ существенно упрощает и ускоряет применение ЭВМ. В принципе его можно полностью автоматизировать, вводя показания спектральных приборов непосредственно в ЭВМ. В её памяти должны быть заложены спектральные характеристич. признаки MH. веществ, на основании к-рых машина произведёт анализ исследуемого вещества.

Количественный MCA по спектрам поглощения основан на Бугера - Ламберта - Бера законе, устанавливающем связь между интенсивностями падающего Iо и прошедшего через вещество I света от толщины поглощающего слоя l и концентрации вещества с:
[2422-1.jpg]

Коэфф. к является характеристикой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие проведения количественного MCA - независимость к от концентрации вещества и постоянство к

в измеряемом интервале частот, определяемом шириной щели спектрофотометра.