БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121ртки. В видимой области спектра для визуальных методов спектрального анализа широко используются простые спектроскопы и стилоскопы, в к-рых приёмником является глаз.

Диапазон длин волн, в к-ром работают спектрографы, простирается от коротковолновой границы оптич. диапазона и постепенно расширяется в ИК-область по мере достижения всё более высокой фоточувствительности слоев и развития методов тепловидения. Типы спектрографов отличаются большим разнообразием - от простейших приборов настольного типа для учебных целей и компактных ракетных и спутниковых бортовых приборов для исследования спектров Солнца, звёзд, планет, туманностей до крупных астроспектрографов, работающих в сочетании с телескопами, и лабораторных 10-метровых вакуумных установок с большими плоскими и вогнутыми дифракционными решётками для исследований тонкой структуры спектров атомов. Линейная дисперсия спектрографов (участок фокальной плоскости Длг, занимаемый интервалом длин волн [$\Delta$][$\lambda$]) может лежать в пределах от 102 до 105 мм/мкм, светосила по освещённости (отношение освещённости в изображении входной щели к яркости источника, освещающего входную щель) - от ~0,5 в светосильных спектрографах до 10-3 и менее в длиннофокусных приборах большой дисперсии.
Скоростные многоканальные С. п. для исследований спектров быстропротекающих процессов конструируются путём сочетания спектрографа со скоростной кинокамерой (киноспектрографы), введения в схему прибора многогранных вращающихся зеркал для развертки спектров перпендикулярно направлению дисперсии, применения многоканальной регистрации с многоэлементными приёмниками и т. п. В этой области ещё нет установившейся терминологии; такие С. п. наз. хроноспектрографами, спектрохроно-графами, спектровизорами, скоростными спектрометрами.
3. Одноканальяые С. п. с селективной модуляцией

В приборах групп 3 к 4 на. рис. 2 вместо пространственного разделения длин волн применяют селективную модуляцию (кодирование) [$\lambda$]; разделение [$\lambda$] в этих приборах переносится из оптич. части в электрическую.


Растровые спектрометры создаются по общей для одноканальных С. п. блок-схеме (рис. 4), но в сканирующем монохроматоре щели заменяются рострами спец. формы (напр., гиперболическими; рис. 8). При работе входного растра попеременно в проходящем и отражённом свете возникает амплитудная модуляция излучения той [$\lambda$] , для к-рой изображение входного растра совпадает с выходным растром. В излучении других [$\lambda$] в результате угловой дисперсии изображения смещаются и амплитуда модуляции уменьшает-

Рис. 7. Вакуумный 24-канальный квантометр (заводское название - фотоэлектрическая установка) ДФС-41 для экспрессного и маркировочного анализа чугунов, простых и среднелегированных сталей на легирующие элементы, металлоиды и вредные примосн, аналитические линии которых расположены в вакуумной УФ- области: 1 - вакуумный полихроматор с вогнутой дифракционной решёткой с фокусным расстоянием, равным 1 м, рабочий диапазон 0,175- 0,38 мкм; 2- генератор искры ИВС-1 для возбуждения эмиссионных линий атомов в пробе; 3 - электронно - регистрирующее устройство ЭРУ-1; 4 - блок цифрового отсчёта. Время анализа 10 элементов около 2 мин.

Рис. 8. Гиперболический растр Жерара.

Темные полосы - зеркальные и растр

попеременно работает то в проходящем,

то в отражённом свете.

ся. T. о., ширина АФ [$\delta$][$\lambda$] соответствует полупериоду растра. Растровые спектрометры дают по сравнению с щелевыми спектрометрами выигрыш в потоке (примерно в 100 раз при R = 30 000), однако их применение ограничено засветкой приемника потоком немодулированного излучения, а также сложностью изготовления растров и оптич. части системы.


Сисам - спектрометр интерференционный с селективной амплитудной модуляцией - строится на основе двухлучевого интерферометра, в к-ром концевые зеркала заменены синхронно поворачивающимися дифракционными решетками и введен модулятор по оптич. разности хода. В этом случае амплитудная модуляция накладывается только на интервал [$\delta$][$\lambda$]диф , соответствующий дифракционному пределу в окрестности [$\lambda$], к-рая удовлетворяет условию максимума дифракции для обеих решёток. Сисам всегда работает на дифракционном пределе: R = Rдиф = [$\lambda$] / [$\delta$][$\lambda$]диф , при этом за счёт увеличения входного отверстия поток в ~ 100 раз больше, чем в классич. приборах 1 группы, но оптико-механич. часть весьма сложна в изготовлении и настройке.


4. Многоканальные С. п. с селективной модуляцией

Для данной группы С. п. характерна одновременная селективная модуляция (кодирование) дискретного или непрерывного ряда длин волн, воспринимаемых одним фотоэлектрич. приемником, и последующее декодирование электрич. сигналов. Наибольшее распространение получили два типа приборов этой группы.


В адамар-спектрометрах осуществляется кодирование дискретного ряда [$\lambda$]; общая схема подобна приведенной на рис. 4, но сканирование здесь не применяется, щели в монохроматоре заменены на циклически сменяемые многощелевые растры спец. конструкции (маски-матрицы Адамара). Сигналы приемника декодируются спец. устройством, дающим на выходе дискретный спектр исследуемого излучения, состоящий из ~ 100 точек-отсчетов. Адамар-спектрометры дают выигрыш в потоке и быстродействии и эффективно применяются, напр., для экспресс анализа выхлопных газов двигателей по их ИК-спектрам.


В фурье-спектрометрах осуществляется непрерывное кодирование длин волн с помощью интерференционной модуляции, возникающей в двухлучевом интерферометре при изменении (сканировании) оптич. разности хода. Приёмник излучения на выходе интерферометра даёт во времени сигнал - интерферограмму, к-рая для получения искомого спектра подвергается фурье-преобразованию на ЭВМ. Фурье-спектрометры наиболее эффективны для исследований протяжённых спектров слабых излучений в ИК-области, а также для решения задач сверхвысокого разрешения. Конструкции и характеристики приборов этого типа очень разнообразны: от больших уникальных лабораторных установок с оптич. разностью хода 2 м (R = 10-6) до компактных ракетных и спутниковых спектрометров, предназначенных для метеороло-гич. и геофизич. исследований, изучения спектров планет и т. д. Для фурье-спект-рометров соотношение (1) имеет вид:

R3/2 M корень [$\Delta$]f = K([$\lambda$]).

Отметим ещё раз принципиальное различие рассмотренных групп приборов: в одноканальных приборах 1 и 3 групп время эксперимента затрачивается на накопление информации о новых участках спектра; в приборах 2 группы - на

Рис. 9. ИК-спектры поглощения паров воды на участке 200- 250 ел , полученные с помощью фурье-спектрометра при различных оптических разностях хода [$\Delta$] в интерферометре. Чем больше [$\Delta$] ([$\tau$]. е. чем больше затрачено времени на сканирование по [$\Delta$]), тем больше деталей можно выявить в исследуемом участке спектра. При [$\Delta$] = =4 см спектральное разрешение [$\delta$][$\lambda$]=2/[$\Delta$]= =0,5 см-1.

накопление отношения сигнала к шуму, а в приборах 4 группы - на накопление структурных деталей в данном спектральном диапазоне (рис. 9).

Лит.: Пейсахсон И. В., Оптика спектральных приборов, Л., 1970; T а р ас о в К. И., Спектральные приборы, Л., 1968; ЗайдельА. H., Островская Г. В., Островский Ю. И., Техника и практика спектроскопии, M., 1972; Оптико-механические приборы, M., 1965; Якушенков Ю. Г., Основы теории и расчета оптико-электронных приборов, M., 1971; M е р ц Л., Интегральные преобразования в оптике, пер. с англ., M., 1969; Инфракрасная спектроскопия высокого разрешения. Сб., M., 1972; Кардона M., Модуляционная спектроскопия, пер. с англ., M., 1972.

В. А. Никитин.
СПЕКТРАЛЬНЫЕ ПРИЗМЫ, дисперсионные призмы, один из классов призм оптических; служат для пространственного разделения (разложения в спектр) излучений оптич. диапазона, различающихся длинами волн. Принцип действия С. п., основанный на явлении дисперсии света, и материалы для С. п. описаны в ст. Дисперсионные призмы. Наиболее употребительны следующие С. п. (рис.):

Спектральные призмы: / - простая трёхгранная призма с преломляющим углом [$\alpha$] = 60°; 2 - призма Корню; преломляющие углы [$\alpha$] обеих прямоугольных призм, из к-рых она состоит, равны 30°; 3- призма Аббе, включающая две прямоугольные призмы с преломляющими углами a1 = 30° приклеенные к граням равнобедренной (a2 - 45° ) прямоугольной о ражателъной призмы', показатели преломления всех трёх призм одинаковы (ш = п2). Если луч света падает на приму Аббе так, что в отражательную призму он входит под углом, близким к нормали, его отклонение от первоначального направления при выходе из последней призмы составляет ок. 90°; 4 - призма Розерфорда. Центральная призма с преломляющим углом a2 = 100° изготовляется из стекла (флинт) с большим показателем преломления n2, две боковые призмы - из стекла (крон) с малым щ; a1 = 21°; 5 - трёхкомпонентная призма Амичи. Боковые призмы изготовляются из крона, средняя - из флинта (n2>n1); a1