БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

84062029216121091212 линий спектра, наз. рентгеновским спектрометром (при фоторегистрации - спектрографе м), а при одновременной регистрации многих (до 24) линий спектра - рентгеновским к в а нтометром (рис. 2). Для выделения каждой линии квантометр имеет отд. малогабаритный спектрометр, к-рый вместе со своей электронной регистрирующей установкой наз. его каналом. Излучение от анализируемого образца поступает во все каналы квантометра одновременно. Число импульсов детектора за определённое время счёта регистрирует ццфропечатающая машинка. В спектрометрах часто применяют также интегрирование импульсов с последующей записью самописцем результатов непрерывного сканирования прибора вдоль спектра. Выходы каналов квантометров могут быть введены в ЭВМ для дальнейшей обработки информации.

В прецизионных спектрометрах непрерывная запись спектра вносит нек-рые искажения, поэтому иногда применяют автоматич. шаговое сканирование: регистрируют число импульсов детектора во MH. равноудалённых точках спектра. В этих точках спектрометр неподвижен в течение заданного времени, переход от точки к точке совершается быстро. В аналитич. спектрометрах иногда применяют шаговое сканирование по точкам спектра, в к-рых расположены аналитич. линии определяемых элементов. Такой спектрометр работает по программе, задающей набор определяемых элементов, время счёта импульсов в каждой из соответствующих точек спектра, необходимые параметры электронной регистрирующей установки и тип кристалла-анализатора (в спектрометрах имеются 3-4 сменных кристалла). Всю программу и запись результатов спектрометр выполняет автоматически.

На пром. предприятиях в качестве датчиков состава часто используют специализированную С. а. р. для определения одного или немногих элементов. К их числу относится аппарат АРФ-4М, основанный на методе стандарта-фона - анализе по отношению интенсивностей аналитич. линии и линии фона. Эти линии расположены близко друг к другу и регистрируются одним детектором, попадая в него через две соответствующие щели. Качающаяся шторка поочерёдно перекрывает эти щели и одновременно переключаются две установки, регистрирующие импульсы детектора. Регистрирующая установка прекращает счёт импульсов после набора заданного числа их на линии фона. Число импульсов, сосчитанное на аналитич. линии, будет пропорционально отношению её интенсивности к интенсивности линии фона. Такие датчики состава применяются на обогатительных ф-ках и металлургич. з-дах цветной металлургии. АРФ-4М позволяет определять 12 разных элементов.

Бездифракционная С. а. р. применяется для рентгеновского спектрального анализа. В ней рентгеновское излучение исследуемого образца непосредственно регистрируется сцинтилляционными, газовыми пропорциональными или полупроводниковыми счётчиками (рис. 3), амплитуды импульсов к-рых пропорциональны энергиям фотонов исследуемого излучения.

Рис.З. Схема рент-геноспектрального бездифракционного анализатора: / - изотопный источник; 2 - защитный экран; 3 - анализируемый образец; 4 - фильтр; 5 - детектор.

Аналитич. линии выделяются одно- или многоканальным амплитудным анализатором импульсов счётчика. При близком расположении окна счётчика к образцу полезно используемый телесный угол излучения каждого атома образца очень велик, а регистрируемая Интенсивность превосходит её значение в дифракционной С. а. р. на неск. порядков. Это позволяет проводить анализ даже при очень слабом флуоресцентном рентгеновском излучении образца, возбуждаемом либо изотопными источниками, либо миниатюрными рентгеновскими трубками, анодный ток к-рых не превышает неск. мка.

Недостатком без дифракционной С. а. р. является сравнительно невысокая разрешающая способность пропорционального детектора. Для устранения помех, создаваемых линиями, соседними с аналитической, чаще всего последовательно применяют пару сбалансированных фильтров из двух соседних элементов. С их помощью удаётся выделить ту область спектра, в к-рой находится аналитич. линия, и улучшить разрешающую способность бездифракционной С. а. р.

Малые габариты и масса позволяют применять без дифракционные анализаторы переносного типа для геологич. разведки полезных ископаемых в полевых условиях и для спуска их в пробурённую скважину диаметром от 40 мм на глубину до 100 м.

Микроанализаторы основаны на возбуждении первичного рентгеновского излучения образца игольчатым электронным лучом (зондом) диаметром около 1 мкм, разложении этого излучения в спектр и его регистрации. Для получения тонкого электронного зонда используют электронную пушку и фокусирующие магнитные линзы. Применение светосильных фокусирующих спектрометров с изогнутыми кристаллами или вогнутой дифракционной решёткой позволяет при токе зонда всего неск. мка получить спектр данной точки образца. Выбор этой точки можно производить визуально с помощью оптич. микроскопа. Если образец и зонд неподвижны, а сканирует спектрометр, можно измерить весь спектр излучения образца и сделать полный анализ его состава в данной точке. Если зонд и спектрометр неподвижны, а образец сканирует, можно получить запись распределения вдоль линии сканирования того элемента, на к-рый настроен спектрометр. Если спектрометр и образец неподвижны, а зонд (с помощью двух пар отклоняющих пластин и поданных на них переменных электрич. потенциалов) сканирует по поверхности образца размером ~ 0,4*0,4 мм2синхронно со строчной развёрткой телевизионного устройства, на вход к-рого подан выходной потенциал детектора спектрометра, то на экране кинескопа будет получено сильно увеличенное изображение сканируемой поверхности в лучах того элемента, на к-рый настроен спектрометр. T. о. можно получить распределение данного элемента по исследуемому участку поверхности образца. В совр. микроанализаторах часто используют два рентгеновских спектрометра: один - с кристаллом-анализатором, другой - с дифракционной решёткой. Это позволяет выполнить локальный анализ всех элементов, начиная с Li.

Лит.: Б л о х и н M. А., Методы рентге-но-спектральных исследований, M., 1959; Бирке Л. С., Рентгеновский микроанализ с помощью электронного зонда, пер. с англ., M., 1966; Б л о х и н M. А., Рентгено-спектральная аппаратура. "Приборы и техника эксперимента", 1970, № 2; 3 и м к и-н а Т. M., Ф о м и ч е в В. А., Ультрамягкая рентгеновская спектроскопия, Л., 1971; Плотников P. И., Пшеничный Г. А., Флюоресцентный рентгенора-диометрический анализ, M., 1973; JIeм а н E. П., Рентгенорадиометрический метод опробования месторождений цветных и редких металлов, Л-, 1973; Электронно-зондовый микроанализ, пер. с англ., M., 1974.

M. А. Блохин.


СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЁЗД, разделение звёзд на классы, установленные по различиям в их спектрах (в первую очередь по относительным интенсивностям спектральных линий).

После первых попыток С. к. з. во 2-й половине 19 в. (итал. астроном А. Сек-ки, нем. астроном Г. Фогель и др.) наиболее удачной оказалась т. н. гарвардская классификация, разработанная на рубеже 19 и 20 вв. амер. астрономом Э. Кэннон. Осн. критерием в этой классификации принята интенсивность атомных спектральных линий или молекулярных полос; одновременно грубо учитывается распределение энергии в непрерывном спектре звезды. Гарвардская С. к. з., основанная на эмпирич. данных, является температурной классификацией, отражающей различия ионизационных темп-р звёздных атмосфер и в нек-рой степени возможные различия химич. состава звёзд.

Спектральные классы имеют буквенные обозначения и располагаются в последовательности :
[2421-1.jpg]

соответствующей убыванию температуры; ответвления выражают различия химического состава. Переходы между классами непрерывны, внутри классов вводятся десятичные подразделения, например В0, Bl, В2, ..., В9, А0, ..., причём каждый последующий класс или его подразделение наз. более поздним по отношению к предыдущему. 99% всех звёзд принадлежат к спектральным классам В - M. Звёзды классов О, R, N, S редки. Спектральные классы характеризуются след, признаками.

К л а с с О (темп-pa t г" 50 000-30 000К). К этому классу принадлежат немного-числ. весьма горячие звёзды с сильно развитым ультрафиолетовым участком спектра. Характерны линии ионизованного гелия. В более поздних подразделениях видны линии нейтрального гелия, многократно ионизованных азота, углерода, кремния. Встречаются звёзды с широкими эмиссионными полосами, источником к-рых являются также нейтральные и ионизованные атомы гелия и ионизованные атомы азота, углерода ц кислорода. Такие звёзды наз. Вольфа - Райе звёздами и обозначают буквой W.

Класс В (t = 30000-12000К). Для спектров звёзд этого класса характерно наличие в них линий нейтрального гелия и ионизованных кислорода и азота. Линии водорода хорошо заметны, начиная с ВО, и значительно усиливаются при переходе к классу В9. Наоборот, линии гелия к классу В9 ослабляются. Начиная со спектров В5, хорошо заметны линии ионизованного кальция (линия К) и магния (с длиной волны [$\lambda$] 4481 А).

Класс A (t= 11 500-770OK). В спектрах преобладают водородные линии бальмеровской серии, достигающие наибольшей интенсивности в классе АО, лини