БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121. в тепловую); выражается отношением активной мощности, поглощаемой на участке цепи, к квадрату действующего

Вначения тока на этом участке; измеряется в омах. На участках цепи, содержащих проводники большого поперечного сечения, С. а. больше электрического сопротивления при постоянном токе (из-за поверхностного эффекта, см. Скин-эффект, и потерь в магнитном поле на вихревые токи и гистерезис).

СОПРОТИВЛЕНИЕ АКУСТИЧЕСКОЕ, характеристика, вводимая при рассмотрении колебаний акустических систем, равная отношению звукового давления к объёмной колебательной скорости. Активное и реактивное С. а. образуют комплексный импеданс акустический.

СОПРОТИВЛЕНИЕ ЁМКОСТНОЕ, величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью цепи (её участка); измеряется в омах. В случае синусоидального тока С. ё. хс выражается в виде отношения 1/[$\omega$]С, где [$\omega$] - угловая частота тока, С - ёмкость цепи. С. ё. равно отношению амплитуды напряжения на зажимах цепи, имеющей ёмкостный характер (обладающей малыми индуктивностью и сопротивлением активным', такую цепь можно считать эквивалентной конденсатору электрическому), к амплитуде тока в ней. Если ([$\omega$]<>0, изменение напряжения на конденсаторе вызывает изменение заряда на его обкладках; в силу этого в цепи конденсатора непрерывно течёт зарядный (разрядный) ток. В процессе перезарядки конденсатора электрич. энергия периодически передаётся от источника тока электрич. полю конденсатора и затем обратно, причём средняя за период мощность равна нулю, поэтому С. ё. наз. реактивным.


СОПРОТИВЛЕНИЕ ИНДУКТИВНОЕ, величина, характеризующая сопротивление, оказываемое переменному току индуктивностью цепи (её участка); измеряется в омах. В случае синусоидального тока С. и. xL выражается в виде произв. [$\omega$]L, где [$\omega$] - угловая частота тока, L - индуктивность цепи. С. и. равно отношению амплитуды напряжения на зажимах цепи, имеющей индуктивный характер (обладающей малым сопротивлением активным и достаточно большой индуктивностью; такую цепь можно считать эквивалентной индуктивности катушке), к амплитуде тока в ней. При постоянном токе в катушке ([$\omega$] = О) С. и. равно нулю. Когда через катушку протекает переменный ток, электрич. энергия передаётся от источника тока магнитному полю катушки и затем обратно, причём средняя за период мощность равна нулю, поэтому С. и. наз. реактивным.


СОПРОТИВЛЕНИЕ МАГНИТНОЕ, характеристика магнитной цепи. См. Магнитное сопротивление.

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ, наука о прочности и деформируемости элементов (деталей) сооружений и машин. Осн. объекты изучения С. м.- стержни и пластины, для к-рых устанавливаются соответств. методы расчёта на прочность, жёсткость и устойчивость при действии статич. и динамич. нагрузок. С. м. базируется на законах и выводах теоретической механики, но, помимо этого, учитывает способность материалов деформироваться под действием внешних сил. Физико-механич. характеристики (предел текучести, предел прочности, модуль упругости ц т. п.), необходимые для оценки прочности и деформативности материалов, определяются при помощи испытательных машин и спец. измерительных приборов - тензометров. При испытаниях обеспечиваются требуемые условия загружения и высокая точность измерения деформаций испытываемых образцов материалов. Наиболее характерно испытание на растяжение образцов, представляющих собой стержни круглого сечения или полосы с сечением в виде узкого прямоугольника. По результатам этих испытаний строится т. и. диаграмма растяжения-сжатия. Располагая диаграммой испытания и пользуясь разработанными в С. м. методами расчёта, можно предсказать, как будет вести себя реальная конструкция, изготовленная из того же материала.

Основное содержание и методы С. м. При деформации твёрдого тела под нагрузкой изменяется взаимное расположение его микрочастиц, вследствие чего в теле возникают внутр. напряжения. В С. м. определяются наибольшие напряжения в элементах сооружений или деталях машин. Они сравниваются с нормативными величинами, т. е. с напряжениями, к-рые можно допустить, не опасаясь повреждения или разрушения этих элементов (деталей). Проверке подлежат также деформации тела и перемещения его отд. точек. Помимо необходимой прочности, конструкция должна быть также устойчивой, т. е. обладать способностью при малых случайных кратковременных воздействиях, нарушающих её равновесие, лишь незначительно отклоняться от исходного состояния. Выполнение этого требования зависит от внешних сил, геометрии элемента (детали) и от физических констант материала.

Для расчёта элементов конструкций в С. м. разрабатываются приближённые инж. методы, использующие кинематич. и статич. гипотезы, к-рые в большинстве случаев оказываются достаточно близкими к действительности. При выводе расчётных формул для определения напряжений и перемещений производится схематизация рассчитываемого элемента сооружения, его опорных закреплений и действующей нагрузки, иначе говоря, создаётся расчётная схема (модель) объекта.

При построении общей теории расчёта в С. м. рассматриваются т. н. идеализированные тела со свойствами, лишь приближённо отражающими поведение реальных объектов. Тела считаются однородными (со свойствами, одинаковыми во всех точках), сплошными (без пустот), обладающими упругостью (способностью восстанавливать свои размеры после снятия нагрузки), изотропными (с одинаковыми упругими свойствами по всем направлениям). На основе изучения простейших деформаций - растяжения-сжатия, кручения, изгиба в С. м. выводятся формулы, позволяющие для каждого из этих видов деформаций определять напряжения, перемещения и деформации в отд. точках тела. При наличии одновременно двух или неск. простейших деформаций, протекающих в упругой стадии (для к-рой справедлива линейная зависимость между напряжением и деформациями), напряжения и деформации, найденные отдельно для каждого вида, суммируются.

Mн. материалы (напр., бетон) обладают свойством ползучести (см. Ползучесть материалов), вследствие к-рой деформации могут возрастать со временем при неизменной нагрузке. В С. м. устанавливаются законы развития ползучести и время, в течение к-рого она заметно проявляется, а также рассматривается воздействие на стержень ударной нагрузки, при к-рой возникают динамические напряжения; последние определяются по приближённым формулам, выведенным на основе ряда допущений. При расчёте элементов сложной формы, для к-рых аналитич. формулы вывести не удаётся, применяют экспериментальные методы (напр., оптический, лаковых покрытий, муаровых полос и др.), позволяющие получать наглядную картину распределения деформаций по поверхности исследуемого элемента (детали) и вычислять напряжения в его отд. точках. Наибольшую трудность представляет определение т. н. остаточных напряжений, к-рые могут возникать в элементах конструкций, не несущих нагрузки (напр., при сварке или в процессе прокатки стальных профилей).

Одна из важных задач С. м. состоит в создании т. н. теорий прочности, на основе к-рых можно проверить прочность элементов в сложном напряжённом состоянии, исходя из прочностных характеристик, полученных опытным путём для простого растяжения-сжатия. Существует ряд теорий прочности; в каждом отд. случае пользуются той из них, к-рая в наибольшей степени отвечает характеру нагружения и разрушения материала.

Историческая справка. История С. м., как и многих др. наук, неразрывно связана с историей развития техники. Зарождение науки о С. м. относится к 17 в.; её основоположником считается Галилей, к-рый впервые обосновал необходимость применения аналитич. методов расчёта взамен эмпирич. правил. Важным шагом в развитии С. м. явились экспериментальные исследования P. Гука (60-70-е гг. 17 в.), установившего линейную зависимость между силой, приложенной к растянутому стержню, и его удлинением (закон Гука). В 18 в. большой вклад в развитие аналитич. методов в С. м. был сделан Д. Бернулли, Jl. Эйлером и Ш. Кулоном, сформулировавшими важнейшие гипотезы и создавшими основы теории расчёта стержня на изгиб и кручение. Исследования Эйлера в области продольного изгиба послужили основой для создания теории устойчивости стержней и стержневых систем. T. Юнг ввёл (1807) понятие о модуле упругости при растяжении и предложил метод его определения.

Важный этап в развитии С. м. связан с опубликованием (в 1826) Л. Навъе первого курса С. м., содержавшего систематизированное изложение теории расчёта элементов конструкций и сооружений. Принципиальное значение имели труды А. Сен-Венана (2-я пол. 19 в.). Им впервые были выведены точные формулы для расчёта на изгиб кривого бруса и сформулирован принцип, согласно к-рому распределение напряжений в сечениях, отстоящих на некотором расстоянии от места приложения нагрузки, не связано со способом её приложения, а зависит только от равнодействующей этой нагрузки.

Большие заслуги в развитии С. м. принадлежат рус. учёным M. В. Остроградскому, исследования к-рого в области С. м., строит, механики, математики и теории упругости приобрели мировую известность, и Д. И. Журавскому, впервые установившему (1