БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121еханика, Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполнеопределённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханич. системы, к-рые получаются друг из друга преобразованием С., обладают одинаковыми значениями физ. величин, не меняющихся при этих преобразованиях.

Т. о., С. системы, как правило, ведёт к вырождению. Напр., определённому значению энергии системы может отвечать неск. различных состояний, преобразующихся друг через друга при преобразованиях С. В математич. отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (напр., относительно поворотов системы как целого), в ряде задач существует дополнит. вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, напр., для кулоновского взаимодействия и для изотропного осциллятора.

Если система, обладающая к.-л. С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, к-рые в силу С. системы имели одинаковую энергию, под действием "несимметричного" возмущения приобретают различные энергетич. смещения. В случаях, когда возмущающее поле обладает нек-рой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, "включающего" возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, напр., в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрич. зарядами (т. н. изотопич. мультиплетов) позволило установить изотопич. инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU(3)-C. сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, к-рое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамич. С. будет весь спектр стационарных состояний системы. Понятие динамич. С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамич. группы С. объединяются в этом случае все состояния квантовомеханич. системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: В и г н е р Е., Этюды о симметрии, пер. с англ., М., 1971. С. С. Герштейн.

СИММЕТРИЯ в химии проявляется в геом. конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. Д; (см. Симметрия в математике). Так, молекула аммиака NH3 обладает симметрией правильной треугольной пирамиды, молекула метана СН4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамич. группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамич. группа симметрии для молекулы NH3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход , между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещённым, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между к-рыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции к-рых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со спином этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии q-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов к-рых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отд. орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в к-рой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (б) и антисимметричные (п) относительно операции отражения в этой плоскости. Молекулы, у к-рых верхними (по энергии) занятыми орбиталями являются п-орбитали, образуют специфич. классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отд. фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химич. превращений, напр. при фотохимич. реакциях.

Представления о симметрии имеют важное значение при теоретич. анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллич. поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетич. уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 Р. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химич. реакциях, подтверждённый впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органич. химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химич. лазеров и молекулярных выпрямителей, при построении моделей органич. сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Б о л о т и н А. Б., Степанов Н. Ф., Теория групп и ее применения в квантовой механике молекул, М., 1973; В у д в о р д Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971. Н. Ф. Степанов.

СИММЕТРИЯ в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Др. Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвящённые С. растений (франц. учёные О. П. Декандоль, О. Браво), животных (немецкий- Э. Геккел