БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121оэтому именно жёсткие С., у которых электрич. сопротивление практически равно нулю вплоть до очень сильных полей, представляют интерес с точки зрения технич. приложений. Их применяют для изготовления обмоток магнитов сверхпроводящих и др. целей. Существенным недостатком жёстких С. является их хрупкость, сильно затрудняющая изготовление из них проволоки или ленты для обмоток сверхпроводящих магнитов. Особенно это относится к соединениям с самыми высокими значениями Тк и Нк типа V3Ga, Nb3Sn, Pb1,oMo5,1S6. Изготовление сверхпроводящих магнитных систем из этих материалов представляет собой сложную технологич. задачу.

Лит.: Сверхлроводящие материалы. [Сб. ст.], пер. с англ., М., 1965; Металловедение сверхпроводящих материалов, М., 1969.

И. П. Крылов.

СВЕРХПРОВОДЯЩИЕ МАГНИТОМЕТРЫ, квантовые магнитометры, действие которых основано на Джозеф-сона эффекте. Чувствительность С. м. достигает 10-9 гс (10-13тл), а при измерениях градиента магнитного поля ~ 10-10 гс/сл (10-12тл/м). Чувствительный элемент С. м. (сокращённо ЧЭ) представляет собой электрич. контур из сверхпроводника с контактами Джо-зефсона (ими могут быть разделяющие сверхпроводник тонкие, ~ 10 А, плёнки изолятора, точечные контакты и т. п.). ЧЭ реагирует на изменение напряжённости (индукции) магнитного поля, пронизывающего сверхпроводящий контур. На рис. 1 приведена схема С. м., ЧЭ к-рого содержит два идентичных контакта Джозефсона, включённых параллельно в цепь источника постоянного тока. Ток, разрушающий сверхпроводимость в ЧЭ (Iкс), зависит от электрич. характеристик контактов и величины магнитного потока Ф, пронизывающего контур:

Iкс= 2Iс |cosпФ/ФО|, где Фо = 2-10-7гс*см2 - квант магнитного потока (магнитный поток через сверхпроводящий контур квантуется, см. Сверхпроводимость),Iс - ток разрушения сверхпроводимости каждого из контактов (критический ток) -должен быть мал (Iс ~ Фо/L, где L -индуктивность контура). С изменением потока Ф ток Iкс в контуре испытывает осцилляции (рис. 2). Ток Iксдостигает макс. значения всякий раз, как только изменяющийся поток Ф оказывается равным целому числу квантов потока Фо, т. е. период осцилляции равен кванту магнитного потока. Если через ЧЭ протекает постоянный ток ~ Iкс, то электрич. напряжение на контуре также периодически зависит от Ф. По числу осцилляции можно определить Ф, а зная площадь S сверхпроводящего контура, найти напряжённость Н исследуемого магнитного поля (Н = Ф/S).


Рис. 1. Схема сверхпроводящего магнитометра с двумя параллельно включёнными контактами Джозефсона для измерения напряжённости (индукции) магнитного поля.

Обычно для повышения надёжности работы С. м. в контуре дополнительно возбуждают периодич. магнитное поле модуляции. Возбуждаемое переменное поле имеет амплитуду <=% Фо/2S. При наличии поля модуляции на контуре появляется переменное напряжение, фаза к-рого изменяется прямо пропорционально внешнему полю Н. Измерит. блок С. м. выполняет функции усиления переменной составляющей напряжения на контуре и выделения изменения фазы.

Рис. 2. Запись осцилляции тока, текущего в сверхпроводящем контуре с двумя параллельными контактами Джозефсона.

На выходе измерит. блока получают сигнал, пропорциональный изменению фазы, а следовательно, значению Н. С. м. изготовляют также с источниками (генераторами) переменного тока частотой 107-109 гц и с одним контактом Джозефсона в ЧЭ (рис. 3). Ток в ЧЭ возбуждается индуктивно посредством резонансного контура, настроенного на частоту генератора. Одновременно переменный ток низкой частоты (~103 гц), протекающий через тот же контур, осуществляет модуляцию магнитного поля в ЧЭ. Вольт-амперная характеристика ЧЭ нелинейна относительно магнитного поля, к-рое пронизывает контур. Поэтому фаза низкочастотной модуляции изменяется в зависимости от величины внешнего (исследуемого) магнитного поля. К ЧЭ внешнее поле подводится трансформатором магнитного поля, к-рый состоит из приёмной петли и катушки, индуктивно связанной с ЧЭ (материалом для обмотки трансформатора служит сверхпроводя-щая проволока, передача потока происходит без потерь). В С. м. рассматриваемого типа трансформатор имеет две входные петли, включённые навстречу друг другу. При таком включении петель ЧЭ реагирует на градиент поля и является градиентометром. Измерительный блок С. м. осуществляет усиление модулированного высокочастотного сигнала и его детектирование. В результате выделяется сигнал низкой частоты, фаза к-рого пропорциональна измеряемому градиенту поля.

Рис. 3. Схема сверхпроводящего магнитометра для измерения градиента магнитного поля (градиентометра).

Очень высокая чувствительность С. м. позволила осуществить с их помощью ряд тонких экспериментов: уточнить значения физических постоянных, продвинуть измерение электрич. напряжения в область значений 10-14 в, зафиксировать магнитокардиограммы человеческого сердца и др.

Лит.: Фейнман Р., Лейтон Р., С э н д с М. Фейнмановские лекции по физике, [пер. с англ.], т. 9, М., 1967; Кларк Д ж., Низкочастотные применения сверхпроводящих квантовых интерференционных устройств, "Тр. Ин-та инженеров по электронике и радиоэлектронике", 1973, т. 61, № 1, с. 9; Заварицкий Н. В., Ветчинкин А. Н., Установка СКИМП, "Приборы и техника эксперимента", 1974, № 1.

Н. В. Заварицкий,

СВЕРХПРОВОДЯЩИЙ МАГНИТ, см. Магнит сверхпроводящий.

СВЕРХСКОРОСТНАЯ КИНОСЪЁМКА, киносъёмка со скоростью св. 105 кадр/сек; применяется в различных областях науки и техники для исследования явлений и процессов, протекающих с весьма высокими скоростями (взрывов, распространения ударных волн, электрич. разрядов, ядерных реакций и др.). С. к. используется также при создании учебных и науч.-популярных фильмов в качестве метода, дающего возможность зрителю детально рассмотреть все фазы движения объекта съёмки.

Диапазон скоростей 105-107кадр/сек перекрывается с использованием методов оптической компенсации и оптической коммутации (об этих методах см. в ст. Высокоскоростная киносъёмка), а также электрической коммутации. При С. к. по методу электрической коммутации последовательные изображения формируются на неподвижном светочувствит. материале с помощью ряда идентичных объективов или линз, располагаемых в направлении движения объекта съёмки. При съёмке осуществляется коммутация (переключение) соответствующего числа импульсных источников света, каждый из к-рых освещает поле съёмки только одного объектива; при этом коммутация должна обеспечивать освещение объекта в тот момент, когда он находится перед очередным объективом.

Наивысшие (~109кадр/сек) скорости съёмки достигаются применением растровой съёмки и съёмки с диссекцией изображения. При растровой съёмке образованное объективом оптическое изображение разлагается с помощью механич. или оптич. растра на отд. элементы, разнесённые в плоскости изображения. Перемещая взаимно растровое изображение и светочувствит. материал, на последнем получают развёртку изображения (см. Развёртка оптическая) в виде ряда полос (по числу элементов изображения).

Ширина полосы равна протяжённости элемента изображения в направлении, перпендикулярном направлению развёртки, а изменение оптич. плотности каждой полосы по её длине передаёт изменение яркости данного участка кадра во время съёмки. Печать позитивов с негатива развёрнутого изображения производится при обратном ходе лучей. Для получения последовательности кадров необходимо после печати каждого отд. кадра смещать негатив в направлении развёртки на величину поперечника элемента изображения.

Количество отснятых кадров при растровой съёмке ограничено расстоянием между элементами изображения на светочувствит. материале в направлении развёртки и не превышает 300. Такого ограничения не имеет т. н. съёмка с диссекцией изображения, когда поле кадра разделяют на узкие полоски, к-рые при помощи спец. оптич. приспособления (диссектора) проецируются на одну линию. Аналогичные результаты даёт использование системы тонких световодов (в виде волокон диаметром 0,01-0,005 мм), если одни концы световодов расположить вплотную друг к другу в поле первичного оптич. изображения, а другие уложить в один ряд по линии, перпендикулярной направлению развёртки.

Лит. Сахаров А. А., Высокоскоростная съёмка, М., 1950; Дубовик А. С., фотографическая регистрация быстропротекающих процессов, М. ,1964; Саламандра Г. Д., Фотографические методы исследования быстропротекающих процессов, М., 1974. А. А. Сахаров,

СВЕРХТЕКУЧЕСТЬ, особое состояние квантовой жидкости, находясь в к-ром жидкость протекает через узкие щели и капилляры без трения; при этом протекающая часть жидкости обладает равной нулю энтропией. Единств. представителем семейства сверхтекучих жидкостей долгое время считался жидкий гелий 4Не, становящийся сверхтекучим ниже темп-ры ТЛ = 2,17 К (при давлении насыщенных паров ps = 37,8 мм рт. ст.). Сверхтекучий 4Не наз. Не II (см. Гелий). С. Не II была открыта П. Л. Капицей в 1938. В 1972-74 было установлено, что С. обладает также жидкий 3Не при темп-ре ниже Тс = 2,6 х 10-3 К на кривой плавления. Переход нормальных жидких 4Не и 3Не в сверхтекучее сос