БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121(s) аллелями гена, контролирующего структуру гемоглобина у человека. Люди, гомозиготные по мутантной аллели (ss), страдают тяжёлым заболеванием крови - серповид-ноклеточной анемией, от к-рого они гибнут обычно в детском возрасте (эритроциты больного имеют серповидную форму и содержат гемоглобин, структура к-рого незначительно изменена в результате мутации). Однако в тропич. Африке и других районах, где распространена малярия, в популяциях человека постоянно присутствуют все три генотипа - SS, Ss и ss (20-40% населения гетерозиготы - Ss). Оказалось, что сохранение в популяциях человека летальной (смертельной) аллели (s) обусловлено тем, что гетерозиготы (Ss) более устойчивы к малярии, чем гомозиготы по нормальному гену (SS), и, следовательно, обладают отборным преимуществом. Примеры С. многочисленны как в животном, так и в растительном мире. С.- один из факторов, способствующих поддержанию сбалансированного генетического полиморфизма в популяциях, т. е. сосуществования в течение мн. поколений и во вполне определённых соотношениях всех трёх возможных генотипов.

Лит.: М а и р Э., Популяции, виды и эволюция, пер. с англ., М., 1974; Рокицкий П. Ф., Введение в статистическую генетику, Минск, 1974. В. И, Иванов.

СВЕРХЗАДАЧА, термин, введённый К. С. Станиславским в его творческую систему: главная идейная задача, цель, ради к-рой создаются пьеса, актёрский образ, спектакль. См. Станиславского система.

СВЕРХЗВЕЗДА, то же, что квазар.

СВЕРХЗВУКОВАЯ СКОРОСТЬ, скорость движения, превышающая скорость звука в данной среде.

СВЕРХЗВУКОВОЕ ТЕЧЕНИЕ, течение газа, при к-ром в рассматриваемой области скорости v его частиц больше местных значений скорости звука а. С изучением С. т. связан ряд важных практич. проблем, возникающих при создании самолётов, ракет и арт. снарядов со сверхзвуковой скоростью полёта, паровых и газовых турбин, высоконапорных турбокомпрессоров, аэродинамич. труб для получения потоков со сверхзвуковой скоростью и др.

Особенности сверхзвукового течения. С. т. газа имеют ряд качественных отличий от дозвуковых течений. Прежде всего, т. к. слабое возмущение в газе распространяется со скоростью звука, влияние слабого изменения давления, вызываемого помещённым в равномерный сверхзвуковой поток источником возмущений (напр., телом), не может распространяться вверх по потоку, а сносится вниз по потоку со скоростью v > а, оставаясь внутри т. н. конуса возмущений COD (рис. 1). В свою очередь, на данную точку О потока могут оказывать влияние слабые возмущения, идущие только от источников, расположенных внутри конуса АОВ с вершиной в данной точке и с тем же углом при вершине, что и у конуса возмущений, но обращённого противоположно ему. Если установившийся поток газа неоднороден, то области возмущений и области влияния ограничены не прямыми круглыми конусами, а коноидами - конусовидными криволинейными поверхностями с вершиной в данной точке.

Рис. 1. Конус возмущений COD и конус влияния АОВ.

При установившемся С. т. вдоль стенки с изломом (рис. 2, а) возмущения, идущие от всех точек линии излома, ограничены огибающей конусов возмущений -плоскостью, наклонённой к направлению потока под углом ц, таким, что sin м(мю) = = a/v1.

Рис. 2. Обтекание сверхзвуковым потоком: а - стенок с изломом, 6 - выпуклой искривлённой стенки.

Вслед за этой плоскостью поток поворачивается, расширяясь внутри угловой области, образованной пучком плоских фронтов возмущений (характеристик), до тех пор, пока не станет параллельным направлению стенки после излома.

Если стенка между двумя прямолинейными участками искривляется непрерывно (рис. 2, 6), то поворот потока происходит постепенно в последовательности прямых характеристик, исходящих из каждой точки искривлённого участка стенки. В этих течениях, наз. течениями Прандтля - Майера, параметры газа постоянны вдоль прямых характеристик.

При распространении в газе волны, вызывающие повышение и понижение давления, имеют разный характер. Волна, вызывающая повышение давления, распространяется со скоростью, большей скорости звука, и может иметь очень малую толщину (порядка длины свободного пробега молекул). При многих теоретич. исследованиях её заменяют поверхностью разрыва - т. н. ударной волной, или скачком уплотнения. При прохождении газа через скачок его скорость, давление, плотность, энтропия меняются разрывным образом - скачком.

Рис. 3. Обтекание сверхзвуковым потоком: а - клина, 6 - затупленного тела.

При обтекании сверхзвуковым потоком клина (рис. 3, а) поступательное течение вдоль боковой поверхности клина отделяется от набегающего потока плоским скачком уплотнения, идущим от вершины клина. При углах раскрытия клина, больших нек-poro предельного, скачок уплотнения становится криволинейным, отходит от вершины клина и за ним появляется область с дозвуковой скоростью течения газа в ней. Это характерно для сверхзвукового обтекания тел с тупой головной частью (рис. 3, б).

При обтекании сверхзвуковым потоком пластины (см. рис. 2 к ст. Подъёмная сила) под углом атаки, меньшим того, при к-ром скачок отходит от передней кромки пластины, от её передней кромки вниз идёт плоский скачок уплотнения, а вверх - течение разрежения Прандтля - Майера. В результате на верхней стороне пластины давление ниже, чем под пластиной; вследствие этого возникает подъёмная сила и сопротивление, т. е. Д'Аламбера - Эйлера парадокс не имеет места. Причиной того, что, в отличие от дозвукового обтекания, при сверхзвуковой скорости обтекания идеальным газом тела испытывают сопротивление, служит возникновение скачков уплотнения и связанное с ними увеличение энтропии газа при прохождении им скачков. Чем большие возмущения вызывает тело в газе, тем интенсивнее ударные волны и тем больше сопротивление движению тела. Для уменьшения сопротивления крыльев, связанного с образованием головных ударных волн, при сверхзвуковых скоростях пользуются стреловидными (рис. 4) и треугольными крыльями, передняя кромка к-рых образует острый угол B(ета) с направлением скорости v набегающего потока. Аэродинамически совершенной формой (т. е. формой с относительно малым сопротивлением давления) при С. т. является тонкое, заострённое с концов тело, движущееся под малыми углами атаки.

При движении таких тел с умеренной сверхзвуковой скоростью (когда скорость полёта превосходит скорость звука в небольшое число раз) производимые ими возмущения давления и плотности газа и возникающие скорости движения частиц газа малы, что позволяет пользоваться линейными ур-ниями движения сжимаемого газа для определения аэродинамич. характеристики профилей крыла, тел вращения и др.

Рис. 4. Схема обтекания стреловидного крыла.

Для расчёта С. т. около тел вращения и профилей не малой толщины внутри сопел ракетных двигателей и сопел аэродинамич. труб и в других случаях С. т. пользуются численными методами.

Течения с большой сверхзвуковой (гиперзвуковой) скоростью (v >> а) обладают нек-рыми особыми свойствами. Полёт тел в газе с гиперзвуковой скоростью связан с ростом до очень больших значений темп-ры газа вблизи поверхности тела, что вызывается мощным сжатием газа перед головной частью движущегося тела и выделением тепла вследствие внутреннего трения в газе, увлекаемом телом при полёте. Поэтому при изучении гиперзвуковых течений газа необходимо учитывать изменение свойств воздуха при высоких темп-pax: возбуждение внутренних степеней свободы и диссоциацию молекул газов, составляющих воздух, химич. реакции (напр., образование окиси азота), возбуждение электронов и ионизацию. В задачах, в к-рых существенны явления молекулярного переноса,- при расчёте поверхностного трения, тепловых потоков к обтекаемой газом поверхности и её темп-ры - необходимо учитывать изменение вязкости и теплопроводности воздуха, а в ряде случаев -диффузию и термодиффузию компонент воздуха.

В нек-рых условиях гиперзвукового полёта на больших высотах (см. Аэродинамика разреженных газов) процессы, происходящие в газе, нельзя считать термодинамически равновесными. Установление термодинамич. равновесия в движущейся "частице" (т. е. очень малом объёме) газа происходит не мгновенно, а требует определённого времени - т. н. времени релаксации, к-рое различно для различных процессов. Отступления от термодинамич. равновесия могут заметно влиять на процессы, происходящие в пограничном слое (в частности, на величину тепловых потоков от газа к телу), на структуру скачков уплотнения, на распространение слабых возмущений и другие явления. Так, при сжатии воздуха в головной ударной волне легче всего возбуждаются поступательные степени свободы молекул, определяющие темп-ру воздуха; возбуждение колебательных степеней свободы требует большего времени. Поэтому темп-pa воздуха и его излучение в области за ударной волной могут быть намного выше, чем по расчёту, не учитывающему релаксацию колебательных степеней свободы.

При очень высокой темп-ре (~3000-4000 К и более) в воздухе присутствуют достаточно большое количество ионизованных частиц и свободные электроны. Хорошая электропроводность воздуха вблизи тела, движущегося