БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121доль линии чередуются узлы и пучности напряжения и тока. При любом ином значении и характере нагрузочного сопротивления нарушается условие согласования сопротивлений и в линии происходит более сложный процесс -устанавливается режим т. н. смешанных, или комбинированных, волн (часть энергии падающей волны поглощается в активном сопротивлении нагрузки, а остальная энергия отражается от неё - образуются стоячие волны). Входное сопротивление такой линии или её отрезков может иметь периодический характер и величину, изменяющуюся в широких пределах в зависимости от выбора длины рабочей волны, характера нагрузки и геометрия, длины линии. Так, напр., входное сопротивление линии без потерь, нагруженной на активное сопротивление RH, при нечётном числе четвертей волны, укладывающихся вдоль неё, равно р2/Кн, а при чётном - Rн. Для характеристики режима линии и определения величины мощности, выделяемой в нагрузке, пользуются коэфф. бегущей волны, равным отношению миним. и макс, напряжений вдоль линии, или величиной, обратной ему и наз. коэфф. стоячей волны. На использовании свойств линий, их отрезков и полых металлич. тел с определёнными геометрич. размерами и конфигурацией, обладающих различными входными сопротивлениями, основано конструирование разнообразных СВЧ элементов и узлов, таких как двухпроводные, коаксиальные и объёмные резонаторы, трансформаторы, полных сопротивлений, электрические фильтры, гибридные соединения, направленные ответвители, аттенюаторы, фазовращатели, шлейфы и мн. др. Использование в линиях ферритов позволило создать СВЧ элементы и узлы, обладающие необратимыми (вентильными) свойствами, -такие, как изоляторы, направленные фазовращатели (см. Гиратор), циркуляторы и др.


Рис. 1. Распределение амплитуд напряжения U и тока I в идеальных (без потерь энергии) разомкнутых (внизу) и коротко-замкнутых (вверху) СВЧ линиях передачи
[2303-4.jpg]

лебаний. Рядом с эпюрами показаны эквивалентные схемы линий, отражающие характер их входных сопротивлений: L - индуктивность, С - ёмкость.


Активные цепи содержат наряду с пассивными элементами источники СВЧ энергии. К последним относятся гл. обр. электронные приборы -электровакуумные, полупроводниковые, квантовые и др. Осн. виды электровакуумных приборов, применяемых на СВЧ для генерирования, усиления, преобразования и детектирования,- это приборы, в к-рых с электрич. колебаниями или полем электромагнитной волны взаимодействует поток электронов (ток). Их подразделяют на 2 группы: электронные лампы с электростатическим управлением (сеточным управлением) током, в к-рых увеличение энергии СВЧ колебаний происходит в результате воздействия меняющегося потенциала управляющей сетки на объёмный заряд у катода (триоды, тетроды, пентоды), и электронные приборы с динамическим управлением током, в к-рых увеличение энергии СВЧ поля происходит вследствие дискретного (в клистронах) или непрерывного (в лампах бегущей волны, лампах обратной волны, магнетронах, в приборах, основанных на мазерно-циклотронном резонансе,- МЦР генераторах и усилителях и т. д.) взаимодействия электронов с СВЧ полем. Для уменьшения вредного влияния инерции электронов, междуэлектродных ёмкостей и индуктивностей выводов (ограничивающих макс, частоту усиления и генерирования), а также для снижения диэлектрич. потерь в материале баллона и цоколя лампы в приборах 1-й группы (применяемых гл. обр. на метровых и дециметровых волнах) предусмотрен ряд конструктивно-технологич. мер, таких, как уменьшение междуэлектродных расстояний и поверхностей электродов (последние выполняются в виде дисков -для обеспечения удобного подсоединения к ним объёмных резонаторов), использование спец. керамики с малыми потерями СВЧ энергии и др. К таким приборам относятся металлокерамические лампы, нувисторы, маячковые лампы, резнатроны и коакситроны. Приборы 2-й группы (применяемые гл. обр. на дециметровых, сантиметровых и миллиметровых волнах) лишены Ян. недостатков приборов 1-й группы, но по принципу действия, конструктивному исполнению и настройке обычно сложнее их; ограничение макс, частоты усиления и генерирования в них связано с резким уменьшением (при повышении рабочей частоты) размеров и допусков на изготовление отд. СВЧ элементов, ростом потерь, уменьшением связи потока электронов с СВЧ полем и др. причинами. Полупроводниковые приборы всех осн. типов - детекторные и смесительные СВЧ полупроводниковые диоды, СВЧ транзисторы, варакторы (варикапы), лавинно-пролётные полупроводниковые диоды, Ганна диоды, Шотки диоды, туннельные диоды, параметрические полупроводниновые диоды - находят применение во всём диапазоне СВЧ; генераторные и усилительные приборы развивают в непрерывном режиме работы полезную мощность до неск. десятков вт в метровом диапазоне и до неск. вт в сантиметровом.

Рис. 2. Максимальные уровни мощности СВЧ электровакуумных и полупроводниковых приборов (по состоянию на 1973 -1974): 1 - электровакуумные приборы с сеточным управлением; 2 - электровакуумные приборы с динамическим управлением; 3 - полупроводниковые приборы; f - частота; К - длина волны; Р - мощность. Сплошные линии соответствуют непрерывному режиму работы, пунктирные - импульсному.

Рис. 3. Минимальные уровни шумов СВЧ электронных приборов и устройств и уровни шумов внешней среды (по данным на 1973 - 74): / - триоды; 2 - полупроводниковые диоды (смесительные); 3 - лампы бегущей волны; 4 - параметрические усилители; 5 - мазеры; 6 -шумы полюса Галактики; 7 - шумы атмосферы Земли; f - частота; К - длина волны; Т - шумовая температура.

Обобщёнными показателями работы электронных СВЧ приборов, предназначенных для передачи и получения информации, являются их частотно-энергетич. характеристики, отображающие зависимость от частоты предельно достижимых уровней мощности при излучении (рис. 2) и миним. уровней шумов при приёме (рис. 3). Эти характеристики, в частности, связаны с получением наибольшего энергетич. потенциала - отношения выходной мощности передающего устройства к минимально допустимой (для нормальной работы) мощности шумов приёмного устройства; от его величины, в свою очередь, зависит дальность действия радиоэлектронных систем.

Устройства и системы С. ч. т. Различные сочетания пассивных, а также активных и пассивных СВЧ цепей используют для создания разнообразных устройств, таких, как антенно-фидерные, соединяющие антенну посредством фидера со входной цепью радиоприёмника или выходной цепью радиопередатчика, генераторы и усилители, приёмники излучения, умножители частоты, измерит. приборы и т. д. Применение в СВЧ устройствах сверхпроводящих резонаторов, водородных и цезиевых генераторов (см. Квантовые стандарты частоты) позволило получать весьма малую относит. нестабильность частоты (10-10-10-13).

При построении радиоэлектронных систем с большим энергетич. потенциалом используют генераторы на клистронах, магнетронах и др. приборах магнетрон-ного типа либо (гл. обр. в антенных системах, представляющих собой фазированные антенные решётки с электронным управлением диаграммой направленности) большое число (до 10 тыс.) сравнительно маломощных (до неск. десятков вт) электронных приборов, работающих параллельно; параллельно работающие мощные приборы СВЧ применяют в ускорительной технике (см. Ядерная техника). Задача снижения шумов приёмных устройств наиболее эффективно решается при использовании параметрических усилителей (преим. неохлаждаемых) и квантовых усилителей - мазеров (в к-рых активная среда охлаждается до темп-ры жидкого гелия или азота -4 или 77 К). В технологич. целях и для приготовления пищи используются СВЧ печи (рис. 4, 5).

Радикальное решение проблемы миниатюризации и надёжности аппаратуры в системах невысокого энергетич. потенциала было найдено путём создания полностью полупроводниковых передающих и приёмных устройств (рис. 6), особенно в интегральном исполнении (см. Микроэлектроника, Планарная технология). Т. к. размеры осн. элементов в гибридных и монолитных интегральных схемах СВЧ составляют десятки и единицы мкм, такие устройства, применяемые гл. обр. на частотах от 1 до 15 Ггц, можно конструировать из элементов цепей с сосредоточенными параметрами и двухпроводных линий; при их разработке наибольшие трудности вызывают проблемы отвода тепла и устранения паразитных связей.

Рис. 4. Схема рабочей камеры СВЧ печи для сушки керамической шихты: 1 -неподвижный колпак; 2 - волновод; 3 -открытый резервуар, наполненный водной керамической суспензией; 4 - пазы, наполненные водой с целью защиты от СВЧ излучения; 5 - съёмное дно; 6 - электромеханический привод; 7 - трубка, по которой стекает вода из-под колпака при конденсации испарившейся влаги; 8 - бачок, в котором расположено устройство, отключающее СВЧ генератор после окончания сушки шихты.

Эта область С. ч. т., а также техника миллиметрового и субмиллиметрового диапазонов находятся в стадии интенсивного освоения.

Рис. 5. СВЧ печь для приготовления пищи: 1 - стеклянная пластина, на которую кладётся пища; 2 - вентилятор, лопасти которого, вращаясь, отражают электромагнитные волны СВЧ по всем направлениям с целью прогрева пищи со всех сторон; 3 - волновод; 4 - магнетрон; 5 -и