БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121ированного газа за время <~ 100 сек.

При очень низких давлениях подавляющая часть газа находится в адсорбированном состоянии на поверхности вакуумной аппаратуры, а также в растворённом состоянии внутри её материала и лишь незначительная часть - в откачиваемом объёме. Достижимая степень вакуума определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём за счёт десорбции газа со стенок и натекания извне через микроскопич. отверстия. Для получения С. в. натекание извне сводят к минимуму, а аппаратуру вместе с корпусом вакуумной камеры обезгаживают, прогревая в вакууме при темп-ре 300-500 °С. Поэтому обычно корпус вакуумной камеры изготавливают из плотных, сваривающихся, коррозиестойких материалов, имеющих низкое давление пара и легко обезгаживающихся при прогреве (нержавеющая сталь, стекло, кварц, вакуумная керамика; см. Вакуумные материалы).

Откачивающая система сверхвысоко-вакуумной установки состоит из основного насоса, включаемого после окончания прогрева и достижения высокого вакуума, и вспомогательного насоса, работающего при прогреве установки. Поскольку масса откачиваемого газа в условиях С. в. невелика, то в качестве основных применяют сорбционные, ионносорбционные и магниторазрядные вакуумные насосы, быстрота откачки к-рых достигает 106 л/сек (крупные установки), а предельный вакуум 10-13мм рт. ст. Иногда в качестве основных применяют пароструйные (парортутные и паромасляные) и турбомолекулярные насосы.

Измерение С. в. осуществляется электронными ионизационными и магнитными электроразрядными вакуумметрами (см. Вакуумметрия). Нижний предел давлений у первых определяется фотоэлектронным током с ионного коллектора под действием рентгеновского излучения с анода (возникающего при его электронной бомбардировке). Существуют ионизационные вакуумметры спец. конструкции, в к-рых фоновый ток снижен. Наибольшее распространение получил манометр Байярда - Альпер-т а; коллектор ионов в нём представляет собой тонкий осевой стержень, на к-рый попадает лишь малая часть рентгеновского излучения анода. Нижний предел измерений ~10-10 ммрт. ст. Модулируя ионный ток в манометре Байярда -Альперта с помощью спец. электрода, удаётся измерять давления до 10-11мм рт. ст. Подавление фонового тока электрич. полем дополнительного электрода (супрессора) позволяет измерять ещё более низкие давления (особенно в сочетании с методом модуляции). Созданы конструкции, в к-рых коллектор экранирован от попадания на него рентгеновского излучения с анода. В манометре Редхеда ионы из области ионизации вытягиваются через отверстие в экране и при помощи полусферического рефлектора фокусируются на тонкий проволочный коллектор. В манометре Хельмера ионный поток, выходящий из отверстия в экране, отклоняется с помощью 90°-ного углового электростатич. дефлектора и направляется к коллектору. В манометре Грошковского тонкий проволочный коллектор расположен напротив отверстия в торце анодной сетки и защищён от рентгеновского излучения стеклянной трубкой.

Описанные приборы позволяют измерять давление до 10-12 ммрт. ст., а в отдельных случаях до 10-13 мм рт. ст. Значительное уменьшение нижнего предела измеряемых давлений может быть достигнуто за счёт увеличения длины пробега электронов. Ворбитронном манометре удлинение достигается с помощью электрич. поля, а в ионизационном магнетронном манометре (манометр Лафферти) - с помощью магнитного поля. Этими приборами можно измерять давления до 10-12-10-13мм рт. ст. Магнитные электроразрядные вакуумметры, применяемые для измерения С. в., имеют ряд особенностей: чтобы обеспечить зажигание и поддержание разряда при очень низких давлениях, увеличивают размеры разрядного промежутка, повышают анодное напряжение (5-6 кв) и напряжённость магнитного поля (>1000 э). Для исключения фонового тока, связанного с туннельной эмиссией с участков катода, расположенных вблизи анода, эти участки окружают заземлёнными экранами.

Для измерения парциональных давлений газов в условиях С. в. применяются масс-спектрометры, напр, омегатроном удаётся измерять давления до 10-10 ммрт. ст., а статическим, квад-рупольным и др. масс-спектрометрами -до 1012-10-13ммрт. ст.

Лит. см. при статьях Вакуумная техника, Вакуумметрия.

Г. А. Ничипорович, В. С. Босое.

СВЕРХВЫСОКИХ ЧАСТОТ ТЕХНИКА, техника СВЧ, область науки и техники, связанная с изучением и использованием свойств электромагнитных колебаний и волн в диапазоне частот от 300 Мгц до 300 Ггц. Эти границы условны: в нек-рых случаях нижней границей диапазона СВЧ считают 30 Мгц, а верхней -3 Тгц. По типу решаемых задач и связанных с ними областям применения устройства и системы С. ч. т. (излучающие, передающие, приёмные, измерительные и др.) можно подразделить на информационные, относящиеся к радиосвязи, телевидению, радиолокации, радионавигации, радиоуправлению, технич. диагностике, вычислит. технике и т. д., и энергетические, применяемые в пром. технологии, бытовых приборах, в мед., биол. и хим. оборудовании, при передаче энергии и т. д. Устройства и системы С. ч. т. используются как мощный инструмент во мн. научных исследованиях, проводимых в радиоспектроскопии, физике твёрдого тела, ядерной физике, радиоастрономии и др. Весьма широкий диапазон СВЧ условно разбивают на отд. участки, чаще всего определяемые длиной волны л(ламбда),- участки метровых (л = 10 - 1 м), дециметровых (100-10 см), сантиметровых (10-1 см), миллиметровых (10-1 мм) и децимил-лиметровых (или субмиллиметровых) (1-0,1 мм) волн. (Длина волны связана с частотой f соотношением л = с/f, где с - скорость распространения электромагнитных волн в вакууме.)

Теория электромагнитного поля СВЧ основывается на общих законах электродинамики, в соответствии с к-рыми составляющие электромагнитного поля (векторы электрич. и магнитного полей Е и Н), зависящие от координат и времени, и характеристики источников, порождающих это поле (плотность заряда и плотность полного тока), связаны между собой системой Лоренца - Максвелла уравнений. Вводя понятие волнового сопротивления среды р = Е/Н, можно перейти к т. н. телеграфным уравнениям, к-рые устанавливают связь между напряжениями и токами в СВЧ устройствах (зависящими от координат и времени), с одной стороны, и электрич. параметрами устройств - с другой.

Общие свойства и особенности устройств С. ч. т. Устройствам С. ч. т. (особенно на длинах волн 30 см - 3 мм) присущи характерные свойства, к-рые отличают их от устройств, применяемых в других, примыкающих к ним участках электромагнитного спектра. К числу таких свойств относятся: соизмеримость (как правило) длины волны с линейными размерами устройств и их элементов, соизмеримость времени пролёта электронов в электронных приборах с периодом СВЧ колебаний, относительно слабое поглощение волн в ионосфере и сильное (на определённых частотах) поглощение их в приповерхностном слое Земли, высокий коэфф. отражения от металлич. поверхностей, возможность концентрации СВЧ энергии в узком луче, способность энергетического взаимодействия с веществом (молекулами и атомами), большая информационная ёмкость диапазона СВЧ и т. д.

Цепи, элементы и электронные приборы С. ч. т. В диапазоне СВЧ пассивные цепи (не содержащие источников энергии) и входящие в них элементы представлены гл. обр. т. н. линиями передачи и их отрезками в виде различных радиоволноводов (двухпроводных и коаксиальных - на метровых и дециметровых волнах; коаксиальных, полых и полосковых - на сантиметровых волнах; полых, диэлектрических и квазиоптических - на миллиметровых и субмиллиметровых волнах), посредством к-рых электромагнитная энергия направленно передаётся к приёмнику с целью последующего выделения в нём сигналов полезной информации либо энергии СВЧ. Обычно линия имеет длину, соизмеримую с длиной волны или большую, чем она; время распространения волны в линии соизмеримо с периодом СВЧ колебаний или превышает его. В отличие от электрич. цепей (применяемых частично на метровых, но чаще на более длинных волнах), в к-рых индуктивность сосредоточена в катушке, ёмкость - в конденсаторе, активное сопротивление - в резисторе и к-рые наз. цепями с сосредоточенным и постоянными, ёмкость, индуктивность и активное сопротивление в линии передачи можно представить распределёнными вдоль всего проводника; поэтому линии относят к т. н. цепям с распределёнными параметрами. Электрич. процессы, протекающие в такого рода цепях, требуют изучения не только во времени, но и в пространстве.

Когда к линии с одной стороны подключён генератор переменной эдс, а с другой-нагрузка, вдоль линии (от генератора к нагрузке) движется т. н. бегущая волна, переносящая энергию. Режим чисто бегущих волн наблюдается в линии только в том случае, если она нагружена на сопротивление, равное её волновому сопротивлению p; входное сопротивление такой линии (на клеммах генератора) также равно сопротивлению нагрузки; при отсутствии потерь в линии действующие значения напряжения тока вдоль неё везде постоянны, и передаваемая энергия полностью поглощается нагрузочным сопротивлением.

В разомкнутой и короткозамкнутой линиях (рис. 1), наоборот, устанавливается режим стоячих волн, и в