БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121мами.

РЕНТГЕНОГРАФИЯ МАТЕРИАЛОВ, область исследований, занимающаяся решением разнообразных задач материаловедения на основе рентгеновских дифракционных методов. В Р. м. исследуют как равновесные, так и неравновесные состояния материалов; изучают их кристаллическую структуру, фазовый состав и его изменения, строят фазовые диаграммы, исследуют состояние деформированных (или подвергнутых к.-л. др. воздействиям) материалов, процессы упорядочения и явления ближнего порядка в них.

В Р. м. используют дифракцию моно-или полихроматич. рентгеновского излучения в рентгеновских камерах, получая рентгенограммы моно- или поликристал-лич. образцов, или регистрируют распределение рассеянного рентгеновского излучения в рентгеновских дифрактометрах (см. Рентгеновский структурный анализ).

Определение числа, размеров и раз-ориентировки кристаллитов. Размеры кристаллитов поликристаллич. материала, существенно влияющие на его механич. свойства, определяют методами Р. м. Средний объём V достаточно крупных (~0,5-5мкм) кристаллитов находят по их числу N в исследуемом образце: V = Q/N, где Q - объём образца. Число N кристаллитов, участвующих в отражении рентгеновских лучей, определяется числом п точечных рефлексов, составляющих дебаевское кольцо рентгенограммы (см. Дебая - Шеррера метод): N = 2п/а cos 0, где а - постоянная величина (параметр аппаратуры), 0 - брэгговский угол.

Рентгенографич. методы позволяют определять углы разориентировки и размеры блоков мозаики - областей с правильным строением, повёрнутых одна относительно другой (разориентирован-ных) на очень малые углы. Измельчение блоков мозаики сопровождается упрочнением материалов, характеристики мо-заичности связаны с плотностью дислокаций. О размерах блоков мозаики ~0,05-0,1 мкм судят по размытию (уширению) дебаевских колец (рис. 1).

Рис. 1, Профили линий дебаеграммы: а - узкие (неуширенные ) сплошные отражения от кристаллитов размерами ~0,5 мкм; б ~ уширенные отражения от блоков мозаики размерами 0,1 - 0,2 мкм. b- полуширина размытой линии.

Если уширение обусловлено только мо-заичностью, то усреднённые значения размеров блоков: D = Л/b cos 0, где 3 - полуширина размытой линии, Л - длина волны использованного излучения. Средний угол разориентировки блоков 8 определяют по эффектам двойного вульф-брэгтовского рассеяния в малоугловой области (при е = 2 0 =< 0,5°), когда первично отражённый луч отражается ещё раз от подходящим образом ориентированного блока в направлении исходного пучка (рис. 2). В окрестности первичного луча появляется дополнительное диффузное рассеяние, интенсивность к-рого I(е) определяет б: I(е) = Ae-1ехр{-Ве2/б2}, где А и В - постоянные величины.

Определение остаточных напряжений. Вследствие пластич. деформаций, фазовых превращений, облучения частицами высоких энергий, неравномерного нагрева и охлаждения и т. д. в материалах могут возникать остаточные напряжения. Макронапряжения приводят к короблению, растрескиванию, межкристал-литной коррозии, а иногда обусловливают анизотропию механич. и магнитных свойств материала или повышают его усталостную прочность (напр., при наличии сжимающих напряжений). Рент-генографич. определение макронапряжений в простейшем случае сводится к измерению смещения дебаевской линии дельта 0. В простейшем случае при нормальных напряжениях а смещение дельта 0 связано с а выражением: а = Ectg0*дельта 0/n, где Е - Юнга модуль, n - Пуассона коэффициент.


Рис. 2. Схема двойного вульф-брэгговского рассеяния (II) от блочного полнкристалла в область малых углов e от первячного пучка I.

Микронапряжения, как и измельчение блоков мозаики, приводят к ушир-ению дебаевских линий. Если уширение обусловлено только микронапряжениями, то средняя их величина (для кристаллов кубич. сингонии): дельта а/а = b/4 tg 0. Для разделения эффектов, вызываемых микронапряжениями и блоками мозаики, применяют спец. методику, основанную на гармоническом анализе.

Фазовый анализ. Р. м. позволяет производить качеств, и количеств, фазовый анализ гетерогенных смесей. Каждая фаза данного вещества даёт на рентгенограмме характерное отражение. В определении составляющих смесь фаз по их отражениям и состоит качеств, фазовый анализ. Количеств, фазовый анализ проводят на рентгеновском дифрактометре: сопоставляя интенсивности отражений фазы и эталона, находящихся в смеси, можно определить концентрацию данной фазы в поликристалле.

Фазовые превращения. Р. м. применяют для исследования изменений в пересыщенном твёрдом растворе, обусловленных его распадом (старением) и, следовательно, возникновением новых фаз и (или) исчезновением старых. Темпера-турно-временная зависимость изменения концентрации фаз даёт возможность изучать кинетику процессов и научно выбирать, напр., режимы термообработок, определять энергию активации процесса и т. д. Распад твёрдых растворов сопровождается изменением их физ. и механич. свойств. Особенно значительно меняются свойства, когда кристаллич. решётка вновь образующейся фазы совпадает с исходной решёткой твёрдого раствора и между ними нет чёткой границы раздела; в таком случае говорят, что распад протекает когерентно - образуются, напр., зоны Гинье-Престона (рис. 3). Если возникает чёткая граница раздела, то говорят о некогерентных выделениях фаз. Рентгенограммы твёрдых растворов при когерентном и некогерентном распадах существенно отличаются, что позволяет получать важные данные о ходе кристаллоструктурных процессов. Определение типа твёрдого раствора и границы растворимости. Для установления типа твёрдого раствора в Р. м. определяют количество п атомов в элементарной ячейке раствора, используя рентгенографич. данные о её объёме Q и значении плотности раствора р: п = Qp/A*1,66*10-24, где А - средневзвешенный атомный вес. Если п окажется равным числу атомов в элементарной ячейке растворителя nо, то раствор построен по типу замещения; если п>nо - имеем раствор внедрения, при п
Для установления границы растворимости в твёрдом состоянии в Р. м. анализируют изменения периодов кристаллич. решётки при повышении концентрации раствора. Концентрация, при к-рой период решётки (для 2 компонентных растворов) перестаёт меняться при дальнейшем изменении состава, определяет предельную растворимость для данной темп-ры. По найденным значениям предельной растворимости для различных темп-р строят границу растворимости. Рентгенографическое исследование расплавленных и аморфных веществ. Аморфные вещества и расплавы дают диффузное рассеяние рентгеновских лучей (см. рис. 6 в ст. Рентгеновский структурный анализ), но на рентгенограммах всё же можно выделить немногочисленные и очень размытые интерференционные максимумы. Анализ дифракционных картин (рис. 4,a) позволяет разобраться в структуре жидкостей и аморфных тел; при этом определяется функция атомного распределения р (т), т. е. усреднённое по объёму Q число атомов N в 1 см3 на расстоянии r от центрального атома: р (г) = (dN/dQ)r (рис. 4, б). Диффузный фон несёт также информацию об электронной структуре сплава.



Рис. 3, Диффузное рассеяние состаренного монокристалла Ni - Be. Дополнительное диффузное рассеяние вокруг отражений твёрдого раствора вызвано распадом пересыщенного твёрдого раствора с образованием мелкодисперсной новой фазы, имеющей ту же кристаллич. решётку, что и раствор, но отличающуюся по составу и удельному объёму (разные периоды решётки). Для каждого отражения приведены индексы интерференции, отличающиеся от миллеровских индексов порядком отражения.

[2202-38.jpg]

Рис. 4. Дебаеграмма (а) аморфного твёрдого тела (или жидкости, расплава) и график (б) изменения распределения р(r) атомной плотности Hg с расстоянием r от центра неупорядоченного скопления. Появление нескольких первых размытых максимумов интенсивности I(S) (где S=sin 0/Л.) вызвано неупорядоченным скоплением атомов (ионов).

Исследование ближнего и дальнего порядка. В твёрдых растворах атомы компонентов распределены, как правило, не хаотично, а с нек-рой корреляцией (см. Дальний порядок и ближний порядок). Когда корреляция существует только в ближайших координационных сферах, возникает или ближнее упорядочение (напр., в сплавах Fe-Si и Fe-Al), либо ближнее расслоение (Сr-Мо и Si-Ge). Рентгенографически это можно обнаружить по появлению дополнительного диффузного фона. С помощью Р. м. установлено, что при понижении темп-ры в твёрдых растворах с ближним расслоением обычно происходит распад на 2 твёрдых раствора (напр., Al-Zn), а в растворах с ближним упорядочением при этом возникает дальний порядок (напр., в Fe3Al). В последнем случае корреляция между упорядоченными атомами наблюдается в объёме всего образца, что сопровождается появлением на рентгенограмме слабых дополнительных сверхструктурных линий (рис. 5), по интенсивности к-рых можно судить о степени развития дальнего порядка.


Рис. 5. Дебаеграмма сплава Fe - Al. При упорядоченном расположении атомов разного сорта, кроме обычных отражений 110, 200, 211, 220, 310, присущих твёрдому раствору с объёмноцентрированной кубической решёткой, появляются более слабые дополнительные сверхстр