БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121ронами (первичные спектры), либо облучением вещества первичными лучами (флуоресцентные спектры). Спектры испускания регистрируются рентгеновскими спектрометрами (см. Спектральная аппаратура рентгеновская). Их исследуют по зависимости интенсивности излучения от энергии рентгеновского фотона. Форма и положение рентгеновских спектров испускания дают сведения об энергетическом распределении плотности состояний валентных электронов, позволяют экспериментально выявить симметрию их волновых функций и их распределение между сильно связанными локализованными электронами атома и коллективизированными электронами твёрдого тела.

Рентгеновские спектры поглощения образуются при пропускании узкого участка спектра тормозного излучения через тонкий слой исследуемого вещества. Исследуя зависимость коэффициента поглощения рентгеновского излучения веществом от энергии рентгеновских фотонов, получают сведения об энергетич. распределении плотности свободных электронных состояний. Спектральные положения границы спектра поглощения и максимумов его тонкой структуры позволяют найти кратность зарядов ионов в соединениях (её можно определить во многих случаях и по смещениям осн. линий спектра испускания). Р. с. даёт возможность также установить симметрию ближнего окружения атома, исследовать природу хим. связи. Рентгеновские спектры, возникающие при бомбардировке атомов мишени тяжёлыми ионами высокой энергии, дают информацию о распределении излучающих атомов по кратности внутренних ионизации. Рентгеноэлектронная спектроскопия находит применение для определения энергии внутренних уровней атомов, для хим. анализа и определения валентных состояний атомов в хим. соединениях.

Лит.: Б л о х и н М. А., Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, под ред. М. А. Блохина, М., 1960; Баринский Р. Л. Нефедов В. И., Рентгено-спектральное определение заряда атомов в молекулах, М., 1966; ЗимкинаТ. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л., 1971; Н е м о ш к а л е н к о В. В., Рентгеновская эмиссионная спектроскопия металлов и сплавов, К., 1972; X-ray spectroscopy, ed. L. V. Azaroff, N.- Y., 1974. М. А. Блохин.

РЕНТГЕНОВСКАЯ СЪЁМКА, фотографич. или видеомагнитная регистрация теневого изображения различных объектов, получаемого при просвечивании их рентгеновскими лучами (РЛ) и отображающего внутр. строение объектов. Р. с. применяется в медицине, биологии, физике, технике и воен. деле. Объектами Р. с. могут быть внутренние органы и системы организма человека и животных, растения, пром. изделия, детали конструкций, образцы различных веществ и пр. Р. с. осуществляют либо прямым методом, при к-ром светочувст-вит. материал экспонируется непосредственно в РЛ, проходящих сквозь снимаемый объект, либо косвенным методом, при к-ром изображение объекта, образованное РЛ на флуоресцирующем экране, переснимается на фотокиноплёнку или записывается на магнитную ленту.

Рентгеновская фотосъёмка прямым методом производится на рентгеновскую плёнку (спец. вид фотоплёнки, характеризующийся очень высокой контрастностью при сравнительно высокой чувствительности к РЛ), заряженную в кассету, к-рая располагается за просвечиваемым объектом (см. Рентгенограмма). Для сокращения выдержки дополнительно применяют усилительные флуоресцирующие экраны, к-рые помещают с обеих сторон плёнки в непосредств. контакте с её эмульсионными слоями. При рентгеновской киносъёмке прямым методом, во избежание потери чёткости изображения из-за продвижения плёнки, просвечивание объекта производится лишь в период экспонирования кадра. Для этого на управляющую сетку трёхэлектродной рентгеновской трубки подаются импульсы тока от коммутатора, связанного с лентопротяжным механизмом съёмочного аппарата. В процессе съёмки плёнка перематывается с катушки на катушку и огибает на участке экспонирования покрытый флуоресцирующим слоем гладкий вращающийся барабан, к-рый служит усиливающим экраном. Таким способом при использовании рентгеновской трубки с холодной эмиссией достигают времени экспонирования кадра 10-7 сек при частоте съёмки 100 кадров в сек.

При Р. с. косвенным методом изображение, образованное РЛ на флуоресцирующем экране с жёлто-зелёным или зелёным свечением, снимается при помощи фото- или киноаппарата на спец. флюорографич. плёнку с высокой чувствительностью к свету жёлто-зелёной области спектра или регистрируется видеомагнитофоном. Для усиления яркости изображения используют экраны с флуоресцирующим слоем, нанесённым на металлич. пластинку и покрытым с внешней стороны тонким металлич. слоем. При подаче на металлич. слой и пластинку постоянного напряжения свечение экрана усиливается приблизительно в 10 раз. Значительно большего усиления яркости достигают включением в схему рентгеновской съёмочной установки электроннооптич. преобразователя изображения (ЭОП). В таких установках РЛ после прохождения сквозь объект падают на фотокатод ЭОП, а изображение, полученное на экране последнего, переснимается фото- или киноаппаратом. Просвечивание объекта при рентгеновской киносъёмке косвенным методом в простейшем случае производится непрерывно в течение всего времени съёмки. Однако в большинстве совр. рентгеновских киноустановок рентгеновское излучение генерируется периодически - лишь во время экспонирования кадра. Благодаря этому интенсивность рентгеновского излучения во многих случаях (особенно в установках с ЭОП) может быть сохранена в пределах допустимых норм облучения биологич. объектов. Этот вид Р. с. широко используют в мед. рентгенодиагностике. При съёмке технич. объектов, где интенсивность рентгеновского облучения не играет существенной роли, частота импульсной Р. с. может достигать 1000 кадров в сек. См, также Электрорентгенография.

Лит.: Байза К. ХентерЛ., Xолбок Ш., Рентгенотехника, [пер. с венг.], Будапешт, 1973. А. А. Сахаров.

РЕНТГЕНОВСКАЯ ТОПОГРАФИЯ, совокупность рентгеновских дифракционных методов изучения различных дефектов строения в почти совершенных кристаллах. К таким дефектам относятся: блоки и границы структурных элементов, дефекты упаковки, дислокации, скопления атомов примесей, деформации. Осуществляя дифракцию рентгеновских лучей на кристаллах различными методами "на просвет" и "на отражение" в спец. рентгеновских камерах, получают рентгенограмму - дифракционное изображение кристалла, наз. в структурном анализе топограммой. Физ. основу методов Р. т. составляет дифракционный контраст в изображении различных областей кристалла в пределах одного дифракционного пятна. Этот контраст формируется вследствие различий интенсивностей или направлений лучей от разных точек кристалла в соответствии с совершенством или ориентацией кристаллич. решётки кристалла в этих точках. Эффект, вызываемый изменением хода лучей, позволяет оценивать размеры и дезориентации элементов субструктуры (фрагментов, блоков) в кристаллах, а различие в интенсивностях пучков используется для выявления дефектов упаковки, дислокаций, сегрегации примесей и напряжений. Р. т. отличают от др. рентгеновских методов исследования кристаллов высокая разрешающая способность и чувствительность, а также возможность исследования объёмного расположения дефектов в сравнительно крупных по размеру почти совершенных кристаллах (до десятков см).



Рис. 1, а. Схема топографн-рования кристалла "на отражение" по методу Шульца. Расходящийся из "точечного" (диаметром 25 мкм) фокуса пучок рентгеновских лучей с непрерывным спектром падает на кристалл под углами от 0 до 0', удовлетворяющими условию Лауэ для длин волн от X до X'. Отражённый пучок даёт его дифракционное изображение на фотоплёнке.


Рис. 1, б. Топограмма по Шульцу алюминиевого монокристалла. Тёмные и светлые полосы на топограмме соответствуют границам блоков в кристалле. Их ширина и цвет определяются величиной и направлением взаимного разворота блоков в кристалле.


Рис. 2, а. Схема топографирования кристаллов "на просвет" по методу Фуд-живара. Расходящийся из "точечного" источника пучок рентгеновских лучей с непрерывным спектром при прохождении через "тонкий" (толщиной t>=1/n, где n - коэффициент поглощения рентгеновских лучей) кристалл создаёт его изображение. Увеличение B/D.


Рис. 2, б. Топограммы по Фудживара "на просвет" кристалла сапфира, полученные при расстоянии D=100 мм и В - соответственно 50, 70, 100, 150 мм, что позволяет получать различное разрешение деталей блочной структуры кристалла. На топограмме 5 видны границы блоков (поперечные тёмная и светлая линии) и следы скольжения (тонкие зигзагообразные тёмные линии). Две параллельные вертикальные тёмные линии - следы дифракционных характеристических линий Ка и Kb, меняющих положение на границах блоков.

Рис. 3, а. Схема топографирования кристаллов "на отражение" по методу Берга и Барретта. Параллельный пучок монохроматического рентгеновского излучения от линейного источника падает на поверхность кристалла под брегговским углом, и дифракционное изображение фиксируется на фотоплёнке, расположенной вблизи кристалла параллельно его поверхности.


Рис. 3, б. Топограмма блочного кристалла алюминия по Бергу - Барретту. Разворот блоков в кристал