БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121 (линейных размеров, темп-ры, давления и т. д.). См. также Электрические измерения и Магнитные измерения.

Лит.: Момот Е. Г., Радиотехнические измерения, М.- Л., 1957; Измерения в электронике. Справочник, ред.-сост. Б. А. Доброхотов, т. 1- 2, М.-Л., 1965; Мирский Г. Я., Радиоэлектронные измерения, М., 1969; Кушнир Ф. В., Савенко В. Г., Верник С. М., Измерения в технике связи, М., 1970; Валитов Р. А., Сретенский В. Н., Радиотехнические измерения, М., 1970; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972. Е. Г. Билык.

РАДИОИЗОТОПНАЯ ДИАГНОСТИКА, раздел радиологии, предмет изучения к-рого - использование радиоактивных изотопов и меченных ими соединений для распознавания заболеваний. Становление совр. Р. д. обусловлено открытием искусственной радиоактивности (1934), определившим возможности получения радиоактивных препаратов (изотопов или их соединений), к-рые позволяют при введении их в организм (in vivo) или в биологич. среды организма (in vitro) изучить состояние органов и систем в норме и патологии. Регистрация кинетики (во времени и пространстве) радиоактивных препаратов осуществляется методами радиометрии. Спец. аппаратура даёт возможность представить радиодиагностич. информацию в виде цифровых величин, графич. изображения и картины пространственного распределения препарата в органах и системах (сцинтиграммы).

В основе методов Р. д. лежат след. принципы: 1) оценка степени разведения радиоактивного препарата в жидких средах организма (определение объёма циркулирующей крови, водного обмена, обмена калия, натрия и др.); 2) определение изменения (во времени) уровня радиоактивности в органах и системах организма или очаге поражения (изучение центр. и периферич. гемодинамики, гепатография, ренография, радиопневмография, определение внутритиреоидного этапа йодного обмена, изучение динамики относит. уровня фосфорного обмена в очаге поражения и др.); 3) визуализация распределения введённого в организм радиоактивного препарата (методы скенирования и гаммасцинтиграфии органов и систем: головного мозга, щитовидной железы, лёгких, печени, почек, костного мозга, костей, лимфатич. системы и др.); 4) определение выведения радиоактивных препаратов из организма или их перераспределения в его биологич. средах (определение желудочно-кишечного кровотечения, белково-связанного йода в крови, всасывания нейтральных жиров и др.); 5) взаимодействие "in vitro" меченых соединений с составными частями биологич. сред организма (без введения радиоактивных препаратов в организм), в частности взаимодействие по типу "антиген-антитело" (определение тироксинсвязывающей способности сыворотки, концентрации различных гормонов в крови и др.).

В развитии Р. д. можно выделить 2 этапа. Первый этап связан с разработкой методик исследования; изысканием радиоактивных препаратов, наиболее адекватно отражающих состояние органов и систем ( Na131I, 131I - гиппуран, 75Se - метионин и др.), создающих минимальную лучевую нагрузку на организм обследуемого (препараты, меченные 99МТс, 111In и др.); изготовлением спец. радиодиагностической аппаратуры (скеннеры, гамма-камеры, многоканальные радиометры и др.). Второй этап характеризуется профилизацией Р. д. соответственно потребностям различных клинич. дисциплин - нейрохирургии, онкологии, эндокринологии, кардиологии, нефрологии и др., что привело к созданию лабораторий Р. д. во мн. профилированных н.-и. центрах и в лечебно-профилактич. учреждениях. Методы Р. д. - часть совр. комплексного обследования больных. См. также Изотопные индикаторы.

Лит.: Фатеева М. Н. , Очерки радиоизотопной диагностики, М., 1960; Зедгенидзе Г. А. , Зубовский Г. А., Клиническая радиоизотопная диагностика, М., 1968; Quimby E., Feitelberg S. , Silver S., Radioactive isotopes in clinical practice, Phil., 1959; Medical radioisotope scintigraphy, 1972; International atomic energy agency, v. 1 - 2, Vienna, 1973.

B. З. Агранат, Ф. М. Лясс.

РАДИОИЗОТОПНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, реактивный двигатель, в к-ром энергия распада радиоактивных изотопов идёт на нагрев рабочего тела или же рабочим телом являются сами продукты распада. Р. р. д. находятся в стадии изучения. Возможно, Р. р. д. найдут применение на космич. летат. аппаратах в комбинации с радиоизотопным тсрмоэлектрич. генератором.

РАДИОИНТЕРФЕРОМЕТР, инструмент для радиоастрономич. наблюдений, к-рый состоит из двух антенн, разнесённых на расстояния D (база) и связанных между собой кабельной, волноводной или ретрансляционной линией связи. Сигналы, принимаемые антеннами от источника радиоизлучения, подаются по линии связи на вход общего приёмного устройства (рис. 1, детектор), где они анализируются и регистрируются. В зависимости от угла между направлением на источник и нормалью к базе изменяются разность фаз сигналов, приходящих к точке сложения, мощность принимаемого сигнала U, и в результате в пространстве чередуются зоны наличия и отсутствия приёма; т. о., Р. имеет многолепестковую диаграмму направленности. Угловой период лепестков равен Оо = Л/D, огибающая определяется конечным размером антенн d, из к-рых составлен Р., ширина огибающей примерно равна Л/d (рис. 2). Многолепестковая структура диаграммы направленности определяет применение Р. гл. обр. для вычисления угловых размеров источников дельта О по глубине модуляции лепестков: или координат источника по фазе лепестков; |Г| = 1 в случае точечного источника (дельта О <<), |Г| < 1 и зависит от Д6 в случае протяжённого. Если использовать метод пространственных спектров, широко применяемый в радиоастрономии при исследовании распределения радиояркости источников излучения, то оказывается, что двухантенный интерферометр измеряет амплитуду Г одной пространственной частоты fпр = D/Л в пространственном спектре источника, т. с. является аналогом узкополосного фильтра (Л - длина волны излучения). Путём последовательных измерений при разных значениях D можно получить весь пространственный спектр источника до частоты Dmax/Л. и определить таким путём распределение яркости по источнику радиоизлучения. Такие Р. с переменной базой находят широкое применение в радиоастрономии для синтеза изображения источника в т. н. антеннах апертурного синтеза (см. Радиотелескоп).

[2126-16.jpg]

Рис. 1. A1, А2 - антенны радиоинтерферометра; D - база; О - точка сложения принимаемых сигналов (U1+ U2); 0 - угол прихода волны; дет - приёмное устройство с квадратичным детектором; Uвых - напряжение на выходе радиоинтерферометра.

[2126-17.jpg]

Рис. 2. Напряжение на выходе радиоинтерферометра при наблюдении протяжённого источника (|Г|<1); Оо = Л/D - период лепестков, О1 - фаза интерференционной картины. Пунктиром обозначены диаграммы направленности отдельных антенн.

Связь между антеннами Р. не обязательно должна быть непосредственной: принятые сигналы могут быть записаны на двух или неск. антеннах независимо (но в одно и то же время), напр. с помощью магнитофонов. Затем записи свозятся в один пункт и совместно обрабатываются с помощью ЭВМ. Такая система позволяет разнести антенны Р. на очень большие расстояния, вплоть до межконти-

нентальных. При этом может быть достигнута разрешающая способность при измерении размеров и координат источников до 10-4 секунды дуги, что значительно превышает возможность др. методов. Благодаря этому Р. со сверхдлинными базами находят всё более обширные применения как в астрономии, так и при решении многих прикладных задач геодезии, геофизики и т. п.

Лит.: Краус Д. Д., Радиоастрономия, пер. с англ., М., 1973; Есепкина Н. А., Корольков Д. В., Парийский Ю. Н., Радиотелескопы и радиометры, М., 1973. Д. В. Корольков.

РАДИОИСКУССТВО, разновидность драматического словесно-звукового искусства, возникшая с развитием технич. средств радио. В понятие "Р." входят также трансформации лит., театр., словесно-музыкальных сценич. произв., к-рые в результате использования творческих приёмов и технич. средств радиовещания приобретают новые художественно-образные качества и новые свойства эстетич. воздействия. Наряду с киноискусством и телевизионным искусством Р. входит в ряд важнейших массовых иск-в, вызванных к жизни мировой научно-технич. революцией 20 в. и новыми потребностями массового общения людей.

Р. располагает собственными художественно-выразительными средствами, особыми условиями творчества и восприятия. Специфика художественно-выразительных средств Р. определяется его осн. отличительной чертой - незримостью происходящего в радиопьесе. При этом особое качество приобретают прочувствованное и осмысленное актёром звучащее слово и звук во всём его многообразии: реальные звуки действительности, звуки, искусственно созданные при помощи спец. приспособлений и электронной аппаратуры, музыка, различные акустич. эффекты, паузы. Т. к. во всяком иск-ве средства выражения должны соответствовать выражаемому (см. Г. Лессинг, Лаокоон, М., 1957, с. 187), то Р., лишённое зрительных образов, тяготеет в своём содержании не столько к миру видимому, к физич. действиям и поступкам (обязательным в зрелищных иск-вах), сколько к "жизни человеческого духа", конфликтам чувств и мыслей, вы