БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121акоплением Th в неразрушаемых остатках пород и миграцией легкоподвижного U.

В молодых глубоководных мор. отложениях наблюдается значит. накопление иония (изотопа Th, члена радиоактивного ряда 92238U), в десятки раз большее по сравнению с равновесным его содержанием в уране. Это обусловлено хим. особенностями иония, благоприятствующими выпадению его из воды с осадками, в отличие от U, удерживающегося в растворе.

Кристаллич. породы Луны (базальты, анортозиты) заметно обеднены радиоактивными элементами (U-0,24 .10-4; Th-1,14.10-4), а породы Венеры характеризуются соотношениями U(2,2 .10-4) и Th(6,5 . 10-4), близкими земным (каменные метеориты соответственно содержат U-1,5.10-6 и Th-4.10-6).

Англ. геолог Дж. Джоли впервые (1905) обратил внимание на то, что Р. г. п. имеет важное значение как источник тепловой энергии Земли. Расчёты показали, что если бы концентрация радиоактивных элементов в объёме всей Земли была такой, как в её поверхностном слое, то суммарное кол-во тепла, образующегося в результате радиоактивного распада, в несколько десятков раз превышало бы потерю Землёй тепла путём излучения его в мировое пространство; из этого следовал вывод, что все радиоактивные элементы сосредоточены только в верхней зоне земной коры. Такое предположение получило частичное подтверждение в 1970-е гг. после измерения концентрации U и Th (10-6%) в образцах пород из мантии, извлечённых со дна океанов.

Норв. учёный В. М. Гольдшмидт показал (1923-27), что содержание радиоактивных элементов в основном в верхней (гранитной) оболочке Земли связано с хим. особенностями силикатов (изоморфным вхождением U и Th в их структуру). Выплавление силикатной земной коры из мантии по принципу зонного плавления неизбежно приводит к обогащению коры U, Th и щелочными элементами.

Лит.: Метеорология и атомная энергия, пер. с англ., под ред. Н. Л. Бызовой и К. П. Махонько, Л., 1971; Кароль И. Л., Радиоактивные изотопы и глобальный перенос в атмосфере, Л., 1972; Израэль Ю. А., Мирные ядерные взрывы и окружающая среда, Л., 1974. С. Г. Малахов.

РАДИОАКТИВНОСТЬ ВОД, обусловлена присутствием в водах радиоактивных веществ, поступающих из атмосферы и вымываемых из почв и горных пород. В водах присутствуют как естественные радиоактивные изотопы (40К, 222Rn, 226Ra, 238 U и др.), так и искусственные (в основном 90Sr, 90Y и 137Cs), возникшие вследствие ядерных взрывов. Содержание естественных радиоактивных веществ в водах же продуктов ядерных взрывов позволило получить нек-рые характеристики физики атмосферы: скорость вымывания аэрозолей из атмосферы, оценку коэфф. макротурбулентной диффузии и скорости обмена между атмосферами полушарий, а также между стратосферой и тропосферой и т. д.

В начальную стадию развития Земли выделение радиогенного тепла (см. Геотермика), по расчётным данным сов. геофизика Е. А. Любимовой, было в 5 раз больше, чем в совр. эпоху. Это было связано с большей Р. г. п. вследствие более высокого содержания радиоактивных элементов (гл. обр. 92235U и 1940К), а также, вероятно, полностью исчезнувших трансурановых элементов. См. также Радиоактивные минералы.

Лит.: Любимов Е. А., Термика Земли и Луны, М., 1968; Баранов В. И., ТитаеваН. А., Радиогеология, М., 1973; Тугаринов А. И., Общая геохимия, М., 1973. А. И. Тугаринов.

РАДИОАКТИВНОСТЬ ОСАДКОВ, обусловлена захватом радиоактивных аэрозолей и газов из атм. воздуха частицами облаков и осадков. Кроме того, сама вода осадков содержит атомы радиоактивного 3Н. Различают естеств. и искусств. Р. о., обусловленные вымыванием из атмосферы соответственно естеств. и искусств. аэрозолей и газов. Наибольший уровень радиоактивности приходится на короткоживущие продукты распада 222Rn: 218Po(RaA), 214Pb(RaB), 214Bi(RaC), 214Po(RaC').

Вымывание осадками - основной механизм очищения атмосферы от радиоактивных загрязнений. Распределение выпадений радиоактивных аэрозолей из атмосферы в региональных районах обычно соответствует распределению количества выпавших осадков. Захват радиоактивных аэрозолей происходит в основном в облаке за счёт конденсац. роста капель на радиоактивных пылинках как на ядрах конденсации и диффузионного захвата пылинок каплями. Захват радиоактивных частиц падающими дождевыми каплями и снежинками происходит гл. обр. под действием инерционных сил и конвективной диффузии. Концентрация радиоактивных аэрозолей в осадках зависит от вида осадков. Наибольшие её величины отмечаются в туманах и мороси.

С. Г. Малахов.

РАДИОАКТИВНЫЕ АЭРОЗОЛИ, естественные или искусственные аэрозоли с радиоактивной дисперсной фазой.

Естественные Р. а. возникают в результате радиоактивного распада изотопов радона, выделяемых с поверхности почвы в атмосферу, а также при взаимодействии частиц космич. излучения с ядрами атомов хим. элементов, входящих в состав воздуха. Образующиеся при этом радиоактивные атомы оседают па частицах нерадиоактивной атмосферной пыли. С поверхности почвы ветром уносится в атмосферу и пыль, содержащая радиоактивные изотопы калия, урана, тория и др. Нек-рое кол-во Р. а. попадает в атмосферу с космич. пылью и метеоритами.

Искусственные Р. а., содержащие продукты деления и радиоактивные изотопы с наведённой активностью, образуются в определённом радиусе при взрыве ядерной бомбы, а также при технологич. или аварийных выбросах на предприятиях атомной промышленности, на урановых шахтах и в обогатит. цехах (см. Радиоактивные отходы).

Состав Р. а. зависит от их происхождения и условий существования в атмосфере. См. ст. Радиоактивность атмосферы и лит. при ней.

РАДИОАКТИВНЫЕ МИНЕРАЛЫ, минералы, содержащие природные радиоактивные элементы (долгоживущие изотопы радиоактивных рядов 238U, 235U и 232Th) в кол-вах, существенно превышающих величины их ср. содержания в земной коре (кларки). Известно ок. 250 Р. м., содержащих уран, торий либо оба эти элемента; радиевых минералов - достоверно не установлено. Разнообразие Р. м., принадлежащих к различным классам и группам, обусловлено нахождением урана в четырёх- и шестивалентных формах, изоморфизмом четырёхвалентного урана с Th, редкоземельными элементами (TR), Zr и Са, а также изоморфизмом тория с TR цериевой подгруппы.

Различают Р. м., в к-рых уран (урановые минералы) или торий (ториевые минералы) присутствуют в виде осн. компонента, и Р. м., в состав к-рых радиоактивные элементы входят в виде изоморфной примеси (уран- и/или торийсо-держащие минералы). К Р. м. не относятся минералы, содержащие механич. примесь Р. м. (минеральные смеси) или радиоактивные элементы в сорбированном виде.

Урановые минералы подразделяются на две группы. Одна объединяет минералы U4+ (всегда содержащие нек-рое кол-во U6+), представленные окислом урана - уранинитом UO2 и его силикатом - коффинитом U(SiО4)1-x (OH)4x. Настуран (разновидность уранинита) и коффинит - гл. пром. минералы гидротермальных и экзогенных месторождений урана; уранинит, кроме того, встречается в пегматитах и алъбититах. Порошковатые окислы (урановые черни) и гидроокислы урана образуют существ, скопления в зонах окисления различных урановых месторождений (см. Урановые руды). Титанаты Урана (браннерит UTi2O6 и др.)известны в пегматитах, а также в нек-рых гидротермальных месторождениях. Вторая группа объединяет минералы, содержащие U6+,- это гидроокислы (беккерелит 3UО3 -3Н2О?, кюрит 2PbO-5UO3 • 5Н2О), силикаты (уранофан Ca(H2O)2U2O4(SiO4) . 3H2O, казолит Pb[UO2][SiO4].H2O), фосфаты (отенит Ca[UO2]2[PO4]2.8H2O, торбернит Cu[UO2]2[PO4]2.12H2O), арсенаты (цейнерит Cu[UO2]2[HSO4]2.12H2O), ванадаты (карнотит K2[UO2]2[VO4]2 • •ЗН2О), молибдаты (иригинит), сульфаты (уранопилит), карбонаты (ураноталит); все они распространены в зонах окисления урановых месторождений.

Ториевые минералы - окисел (ториапит ThO2) и силикат (торит ThSiО4) - менее распространены в природе. Они встречаются в качестве акцессорных минералов в гранитах, сиенитах и пегматитах; иногда образуют существ, концентрации в различных россыпях (см. Ториевые руды).

Уран- и/или торийсодержащие минералы - титанаты (давидит), титанотанталниобаты (самарскит, колумбит, пирохлор), фосфаты (монацит), силикаты (циркон)-большей частью рассеяны в изверженных и осадочных горных породах, обусловливая их естеств. радиоактивность (см. Радиоактивность горных пород). Лишь небольшая часть из них (давидит, монацит) образует существ. концентрации и является источником получения урана и тория. В радийсодержащем барите предполагается изоморфное замещение бария радием.

Для мн. Р. м. характерно метамиктное состояние (см. Метамиктные минералы). Включения Р. м. в зёрнах др. минералов сопровождаются ореолами радиационных нарушений (плеохроичные ореолы и др.). Специфич. особенностью Р. м. является также способность к образованию авторадиограмм (см. Авторадиография). Накопление в Р. м. стабильных изотопов с постоянной скоростью позволяет использовать их для определения абс. возраста геол. образований (см. Геохронология).

Лит.: Гецева Р. В., Савельева К. Т., Руководство по определению урановых минералов, М., 1956; Соболева М. В., Пудовкина И. А., Минералы урана,