БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121рименяют линейные, радиальные и кольцевые схемы соединения станций П. п. (рис. 4). При малых грузопотоках (до 100 патронов в час) неск. станций соединяют одним трубопроводом - линией двухстороннего действия (рис. 4, а). В движении на такой линии может находиться только 1 патрон. В однотрубных установках внеш. П. п. для увеличения их производительности применяют разъезды, к-рые располагают как в середине участка линии между двумя станциями, так и на станциях. При такой конструкции на участке могут двигаться одновременно неск. патронов. Двухтрубная линия (рис. 4, б) обеспечивает независимое движение неск. патронов в обоих направлениях. Неск. (от 2 до 6) линий могут подключаться к одному узлу - распределит, центру с ручным или автоматич. управлением, в к-ром производится перегрузка и сортировка патронов (рис. 4, в). По кольцевой схеме (рис. 4, г) патроны пересылаются между любыми станциями без перегрузок. При двухтрубной линии и кольцевой схеме приёмные станции оборудуют стрелками (на ответвлениях линии, рис. 5). Управление стрелками осуществляется при помощи т. н. несущей памяти - системы контактных или магнитных колец на гильзе патрона или централизованно, напр, при помощи телефонных искателей.

Рис. 5. Стрелка с приёмным устройством: 1-стрелка; 2- приёмное устройство.

Перспективным направлением развития П. п. является применение труб большого диаметра (450 мм в ФРГ, 600 мм во Франции, 1020 мм в СССР) и контейнеров на колёсах, соединённых в поезда (по 5-6 контейнеров в каждом), что позволяет транспортировать грузы общей массой ~ 10 т со скоростью 40-60 км/ч.

Лит.: Руденко Н., Говоров Ф., Пневмотранспорт документов и мелких предметов в патронах (пневмопочта), М., 1963; Контейнерный трубопроводный пневмотранспорт промышленных грузов, М., 1972; Heck G., Frerichs I., Eske W., Die GroBrohrepost, Bd 1-2, Baden-Baden, 1965-69. И. А. Ламм, Г. А. Птицын.

ПНЕВМАТИЧЕСКАЯ РЕЛЕЙНАЯ СИСТЕМА, предназначена для реализации алгебраич. и логич. операций над пневматич. сигналами, принимающими конечное число (чаще всего два) значений (напр., давления окружающей среды, которому ставится в соответствие "0", и давления питания, к-рому ставится в соответствие "1").

Первая П. р. с. для практич. применения создана в СССР в нач. 1960-х гг. на базе универсального пневмореле УСЭППА (универсальной системы элементов промышленной пневмоавтомати-ки). При помощи таких пневмореле можно реализовать все элементарные логич. функции (см. Логические операции) и запоминание пневмосигналов. Это позволяет строить любые однотактные (логич. преобразователи, шифраторы, дешифраторы, матрицы) и многотактные (со счётчиками, регистрами и др.) пневматич. релейные схемы. С появлением универсального пневмореле было положено начало внедрению пневмоавтоматики в ма-шино- и станкостроение, энергетику, металлургию и др. отрасли пром-сти, где автоматизация циклич. процессов осуществлялась до этого в основном средствами электроавтоматики.

Все П. р. с. могут быть разделены на две осн. группы в зависимости от их тех-нич. реализации: .системы, строящиеся на элементах с подвижными деталями, и системы с элементами без подвижных деталей, в к-рых используется взаимодействие течений (см. Пневмоника).

В П. р. с. первой группы могут применяться как элементы универсального назначения, к-рые могут использоваться для реализации неск. элементарных логич. функций, так и специализированные элементы, выполняющие только одну определённую функцию. Применение П. р. с. с элементами второго вида позволяет строить более простые, дешёвые и компактные устройства, но такие системы имеют большую номенклатуру элементов, что не всегда удобно при построении реальных управляющих устройств. П. р. с. из универсальных пневмореле более гибкие и допускают взаимозаменяемость элементов, но при этом каждое управляющее устройство имеет нек-рую аппаратурную избыточность, оно больше по габаритам и дороже устройств со специализированными пневмореле. Большинство П. р. с. состоит из универсального пневмореле и пневмоэлемента, реализующего логич. операцию "или?-. П. р. с. на проточных (струйных) элементах строится не на отд. элементах, а на модулях, при помощи к-рых реализуются уже не только элементарные, но и более сложные логич. функции. В СССР наибольшее распространение получили комбинированные струйно-мембранные системы (первая такая система -"Цикл"- была создана в 1972), к-рые рационально сочетают в себе струйные модули (для реализации сложных логич. функций и различных схем запоминания) и мембранные усилители (при помощи к-рых формируются выходные пневмосигналы, восстанавливаются уровни сигналов, нестандартные сигналы преобразуются в стандартные, реализуются простейшие логич. функции).

Лит.: Берендс Т. К., Таль А. А., Пневматические релейные схемы, "Автоматика и телемеханика", 1959, № 11; их же. О струйно-мембранной релейной технике, там же, 1968, № 7; Агрегатное построение пневматических систем управления, М., 1973. Т. К. Берендс.

ПНЕВМАТИЧЕСКАЯ ХИМИЯ, название химии газов, применявшееся в конце 18 - начале 19 вв.; сохранилось лишь как истории. термин, охватывающий ранний период хим. исследования газов - от 1-й половины 17 в. до конца 18 в. В этот период был установлен закон зависимости объёма газа от давления (Р. Бойлъ), открыты и изучены многие газообразные простые вещества и соединения: двуокись углерода (Дж. Блэк), водород (Г. Кавен-диш), азот (Д. Резерфорд), окись азота, окись углерода, двуокись серы (Дж. Пристли), кислород, хлор, фторид кремния (К. Шееле) и др. газы.

Лит.: Фигуровский Н. А., Очерк общей истории химии, М., 1969, с. 292-323.

ПНЕВМАТИЧЕСКИЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, мягкие оболочки, во внутр. замкнутый объём к-рых воздухонагнетательными установками (вентиляторами, воздуходувками, компрессорами) подаётся атм. воздух, чем достигается их устойчивость и противодействие внеш. нагрузкам (несущая способность). Впервые П. с. к. были применены в 1946 при сооружении обтекателя радиолокац. антенны (инж. У. Бэрд, США). В последующие годы П. с. к. получили распространение во мн. странах.

Оболочки П. с. к. изготовляют из тех-нич. тканей с покрытиями из полимеров (в т. ч. каучуков) или армированных плёнок. Силовой основой плёнок и тканей служат нити из синтетического, реже стеклянного волокна.

Различают 2 осн. типа П. с. к. (рис.): воздухоопорные, в к-рых слабо сжатый (избыточное давление 0,1 -1 кн/м2) воздух подаётся непосредственно под оболочку сооружения, и воздухонесомые, где сильно сжатый (избыточное давление 30-700 кн/м2) воздух наполняет только несущие элементы П. с. к. При установке воздухо-опорных П. с. к. оболочка в месте примыкания к основанию плотно закрепляется по периметру сооружения. Для входа в сооружения (и выхода из них) устраивают шлюзы. Воздухонесомые П. с. к. подразделяют на пневмостержневые и пневмо-панельные. Применяют также комбинированные оболочки - воздухоопорные с поддерживающими конструкциями, а также усиленные канатами, сетками, оттяжками и диафрагмами.

Достоинства П. с. к.: малая масса, возможность перекрытия больших пролётов без внутр. опор, полная заводская готовность, быстрота монтажа, транспортабельность, свето- и радиопрозрачность, низкая стоимость. Недостатки: необходимость постоянного поддержания избыточного давления воздуха в оболочке, сравнит. недолговечность, низкие огнестойкость и звукоизолирующая способность.

Пневматические сооружения: а - воз-духоопорное; б - воздухоопорное с усиливающими канатами (тросами); в -пневмоарочное; г - пневмопанельное.

Применение П. с. к. рационально для возведения постоянных и врем, сооружений различного назначения (производств, и складские помещения, зрелищные, спортивные, торговые, выставочные и др. сооружения), мобильных зданий (станции технич. обслуживания, медпункты, клубы, б-ки), трансп. и гидротехнич. сооружений (мосты, плотины, затворы), вспомогат. устройств для произ-ва строит, работ (подъёмники, тепляки, опалубка и т. п.).

Лит.: Отто Ф., Тростель Р., Пневматические строительные конструкции, пер. с нем., М., 1967; Пневматические конструкции воздухоопорного типа, М., 1973; Dent R. N.. Principles of pneumatic architecture, L., 1971. В. В. Ермолов.

ПНЕВМАТИЧЕСКИЙ ГРОМКОГОВОРИТЕЛЬ, акустич. излучатель, в к-ром звук создаётся изменением (модуляцией) потока сжатого воздуха. П. г. применялись в 30-40-х гг. 20 в. для передачи команд и сообщений в крупных гаванях, речных портах и на др. объектах с повышенным уровнем шума. П. г. состоит из компрессора и баллона, создающих поток сжатого воздуха, модулятора, изменяющего этот поток в соответствии с подводимыми звуковыми колебаниями, и рупора, излучающего звук. П. г. развивали акустич. мощность до 2 кет и воспроизводили звуковые колебания с частотами до 2,5-3,5 кгц (при больших собственных шумах и значит, нелинейных искажениях).

Лит.: О л сон Г. Ф., Масса Ф., Прикладная акустика, пер. с англ., М., 1938; Беранек Л., Акустические измерения, пер. с англ., М., 1952.

ПНЕВМАТИЧЕСКИЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР в машиностроении, средство измерения линейных размеров деталей машин и механизмов по рас