БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121да. Свойство р-i-n-структуры изменять свои электрич. характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений, устроенных т.о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р - n-переходу, и изменять величину обратного тока последнего. Эффект излучат, рекомбинации электронов и дырок, проявляющийся в свечении нек-рых р- n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах. К П. д. могут быть отнесены также и полупроводниковые лазеры.

Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология), к-рая позволяет одновременно получать до неск. тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют гл. обр. Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов- Au, Al, Sn, Ni, Си. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керами-ческий, стеклянный или пластмассовый Корпус (рис. 5).

Рис. 5. Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 -диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стек-лянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный.

В СССР для обозначения П. д. применяют шестизначный шифр, первая буква к-рого характеризует используемый полупроводник, вторая - класс диода, цифры определяют порядковый номер типа, а последняя буква - его группу (напр., ГД402А - германиевый универсальный диод; КС196Б - кремниевый стабилитрон).

От своих электровакуумных аналогов, напр. кенотрона, газоразрядного стабилитрона, индикатора газоразрядного, П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими технич. характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

Об историч. сведениях см. в ст. Полупроводниковая электроника.

Лит.: Полупроводниковые диоды. Параметры. Методы измерений, М,, 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; 3 и С. М., физика полупроводниковых приборов, пер. с англ., М., 1973.

. Ю. Р. Носов.

ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР, полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешёнными энергетическими зонами кристалла (см. Твёрдое тело). В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллич. решётку. Это отличие определяет важную особенность П. л.- малые размеры и компактность (объём кристалла ~ 10-6 - 10-2см3). В П. л. удаётся получить показатель оптич. усиления до 104 см-1 (см. Усиления оптического показатель), хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями П. л. являются: высокая эффективность преобразования электрич. энергии в энергию когерентного излучения (до 30-50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 109 Ггц); простота конструкции; возможность перестройки длины волны X, излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.

Люминесценция в полупроводниках. При рекомбинации электронов проводимости и дырок в полупроводниках освобождается энергия, к-рая может испускаться в виде квантов излучения (люминесценция) или передаваться колебаниями кристаллической решётки, т. е. переходить в тепло. Доля излучат. актов рекомбинации у таких полупроводников, как Ge и Si, очень мала, однако в нек-рых полупроводниках (напр., GaAs, CdS) при очистке и легировании она может приближаться к 100%.

Для наблюдения люминесценции необходимо применить к.-л. способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрич. полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люми-несцирующего кристалла - состояние с инверсией населённостей.

Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещённой зоны ДЕ полупроводника (рис. 1, а); при этом длина волны Х~~hc/ДЕ, где h - Планка постоянная, с-скорость света.

Рис. 1, Энергетические схемы: а - накачки н излучательной рекомбинации в полупроводнике; б - оптического усиления при наличии инверсии населённостей состояний вблизи краёв зон - дна Ес зоны проводимости и потолка Еv валентной зоны; ДЕ - ширина запрещённой зоны, Еэf и Едf - квазиуровни Ферми для электронов проводимости и дырок.

Инверсия населённостей в полупроводниках. Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ес заполнена электронами в большей степени, чем валентная зона вблизи её потолка Еv. Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1/2 от состояний с вероятностью заполнения меньше 1/2 Если Еэfи Едf - квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией hv (где v - частота излучения) выражается формулой:
[2018-20.jpg]

Для поддержания такого состояния необходима высокая скорость накачки, восполняющей убыль электронно-дырочных пар вследствие излучательных переходов. Благодаря этим вынужденным переходам поток излучения нарастает (рис. 1, б), т. е. реализуется оптическое усиление.

В П. л. применяют след. методы накачки: 1) инжекция носителей тока через р-n-переход (см. Электронно-дырочный переход), гетеропереход или контакт металл - полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптич. накачка; 4) накачка путём пробоя в электрич. поле. Наибольшее развитие получили П. л. первых двух типов.

 


2018.htm
ПОЛЮСЫ ГЕОГРАФИЧЕСКИЕ (Северный и Южный).

Общие сведения. П. г.- точки пересечения воображаемой оси вращения Земли с земной поверхностью; в П. г. сходятся земные меридианы. Северный полюс располагается в Сев. полушарии, в центр. части Сев. Ледовитого океана. Южный полюс находится в Юж. полушарии, на материке Антарктида. На П. г. нет геогр. долготы, нет обычных сторон горизонта. П. г.- точки поверхности Земли, к-рые не участвуют в её суточном вращении. Взаимное положение оси вращения Земли к плоскости её орбиты таково, что вблизи П. г. Солнце не поднимается выше 23 1/2°, в связи с чем климат в р-не П. г. отличается суровостью; низкие темп-ры сопровождаются сильными ветрами и метелями. См. также Арктика и Антарктида.

История достижения географических полюсов. Попытки достичь Северного полюса неразрывно связаны с историей изучения и освоения Арктики. Во 2-й половине 19 в. к достижению Северного полюса стремились англичанин Г. Гудзон в 1607 (80°23' с. ш.), рус. мореплаватель В. Я. Чичагов в 1766 (80°30' с. ш.), англичане К. Фипс в 1773 (80°48' с. ш.)и У. Пар-ри в 1827 (82°45' с. ш.), американец Дж. Локвуд в 1882 (83°24' с. ш.)и др. В 1895 норвежский полярный путешественник Ф. Нансен в сопровождении Ф. Иогансена на лыжах и с собачьими упряжками прошёл с дрейфовавшего во льдах Арктического басе, судна "Фрам" до 86°14' с. ш. Весной 1900 итальянец У. Каньи, также пользовавшийся собачьими упряжками, достиг 86°34' с. ш. В сент. 1909 американец Ф. Кук объявил, что он достиг р-на Сев. полюса (примерно 88° с. ш.) 21 апреля 1908, но не представил никаких доказательств. Принято считать поэтому, что первым достиг Сев. полюса (89°55' с. ш., по оптимальным расчётам амер. экспертов) 6 апр. 1909 на собачьих упряжках американец Р. Пири.

Совершенно новые возможности в достижении Сев. полюса открылись с развитием воздухоплавания и авиации. Первая попытка проникнуть в р-н Сев. полюса на возд. шаре принадлежит шведу С. Андре (июль 1897). Она окончилась трагично. В 1926 над Сев. полюсом пролетели без посадки самолёт под управлением Р. Бэрда (США) и дирижабль "Норвегия" под рук. Р. Амундсена (Норвегия), в 1928 - дирижабль "Италия" под р