БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121



кубич. типа вюртцита

4,58 3,82 (по оси а)
6,26 (по оси с)

1975



ZnS

3,6

3,7

165



1700















IV-VI

PbS

0,41

0,34

600

700

кубич.

5,935

1103



PbTe

0,32

0,24

6000

4000

то же

6,460

917




М., Полупроводниковые материалы, пер. с франц., М., 1971; 3 и С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973; Палатник А. С., Сорокин В. К., Основы пленочного полупроводникового материаловедения, М., 1973; Кристал-лохимические, физико-химические и физические свойства полупроводниковых веществ, М., 1973.

Ю. Н. Кузнецов, А. Ю. Малинин.

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ, электронные приборы, действие к-рых основано на электронных процессах в полупроводниках. В электронике П. п. служат для преобразования различных сигналов, в энергетике - для непосредств. преобразования одних видов энергии в другие.

Известно много разнообразных способов классификации П. п., напр, по назначению и принципу действия, по типу материала, конструкции и технологии, по области применения. Однако к осн. классам П. п. относят следующие: элект-ропреобразоват. приборы, преобразующие одни электрич. величины в др. электрич. величины (полупроводниковый диод, транзистор, тиристор); опто-электронные приборы, преобразующие световые сигналы в электрические и наоборот (оптрон, фоторезистор, фотодиод, фототранзистор, фототиристор. полупроводниковый лазер, светоизлу-чающий диод, твердотельный преобразователь изображения - аналог видикона и т. п.); термоэлектрические приборы, преобразующие тепловую энергию в электрическую и наоборот (термоэлемент, термоэлектрический генератор, солнечная батарея, термистор и т. п.); магнитоэлектрич. приборы (датчик, использующий Холла эффект, и т. п.); пьезоэлектрич. и тензометрич. приборы, к-рые реагируют на давление или механич. смещение. К отд. классу П. п. следует отнести интегральные схемы, к-рые могут быть электропреобразующими, оп-тоэлектронными и т. д. либо смешанными, сочетающими самые различные эффекты в одном приборе. Электропреобразоват. П. п.- наиболее широкий класс приборов, предназначенных для преобразования (по роду тока, частоте и т. д.), усиления и генерирования электрич. колебаний в диапазоне частот от долей гц до 100 Ггц и более; их рабочие мощности находятся в пределах от < 10-12вт до неск. сотен вт, напряжения - от долей в до неск. тыс. в и ток - от неск. на до неск. тыс. а. В зависимости от применяемого полупроводникового материала различают германиевые, кремниевые и др. П. п. По конструктивным и технологич. признакам П. п. разделяют на точечные и плоскостные; последние, в свою очередь, делят на сплавные, диффузионные, ме-запланарные, планарные (наиболее распространены, см. Планарная технология), эпипланарные и др. В соответствии с областью применения различают высокочастотные, высоковольтные, импульсные и др. П. п.

П. п. выпускают в металлостеклянных, металлокерамич. или пластмассовых корпусах, защищающих приборы от внешних воздействий; для использования в гибридных интегральных схемах выпускаются т. н. бескорпусные П. п. (см. Микроэлектроника). Номенклатура П. п., выпускаемых во всех странах, насчитывает ок. 100 000 типов приборов различного назначения. См. также Полупроводниковая электроника.

Я. А. Федотов.

ПОЛУПРОВОДНИКОВЫЙ ГЕТЕРОПЕРЕХОД, контакт двух различных по химич. составу полупроводников. На границе раздела изменяется обычно ширина запрещённой зоны ДЕ, подвижность носителей тока, их эффективные массы и др. характеристики полупроводников. В "резком" П. г. изменение свойств происходит на расстоянии, сравнимом или меньшем, чем ширина области объёмного заряда (см. Электронно-дырочный переход). В зависимости от легирования обеих сторон П. г. можно создать р-п-гетеропереходы (анизотипные), р-р- и п - и-гетеропереходы (изотипные). Комбинации различных П. г. и р-n-перехо-дов образуют гетероструктуры.

Идеальная стыковка кристаллич. решёток в П. г. возможна лишь при совпадении типа, ориентации и периода кристаллических решёток сращиваемых материалов. Кроме того, в идеальном П. г. граница раздела должна быть свободна от структурных и др. дефектов (дислокаций, заряженных центров и т. п.) и механич. напряжений. Наиболее широко применяются монокристаллич. П. г. между полупроводниковыми соединениями типа AII1BVи их твёрдыми растворами на основе арсенидов, фосфидов и антимонидов Ga и Аl. Благодаря близости ковалентных радиусов Ga и А1 изменение химического состава происходит без изменения периода решётки. Изготовление монокристаллич. П. г. и ге-тероструктур стало возможным благодаря развитию методов эпитаксиального наращивания полупроводниковых кристаллов.

П. г. используются в различных полупроводниковых приборах: полупроводниковых лазерах, светоизлучающих диодах, фотоэлементах, оптронах и т. д.

Лит.: Алферов Ж. И., Гетеропереходы в полупроводниковой электронике близкого будущего, в кн.: Физика сегодня и завтра, под ред. В. М. Тучкевича, Л., 1973; Елисеев П. Г., Инжекционные лазеры на гетеропереходах, "Квантовая электроника", 1972, № 6; Алферов Ж. И., Инжекционные гетеролаэеры, в сб.: Полупроводниковые приборы и их применение, под ред. Я. Федотова, в. 25, М., 1971. Ж. И. Алфёров.

ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР в ядерной физике, прибор для регистрации ионизирующих излучений, основным элементом к-рого является кристалл полупроводника. П. д. работает подобно ионизационной камере с тем отличием, что ионизация происходит не в газовом промежутке, а в толще кристалла. П. д. представляет собой полупроводниковый диод, на к-рый подано обратное (запирающее) напряжение (~102в). Слой полупроводника вблизи границы р-n-перехода (см. Электронно-дырочный переход) с объёмным зарядом "обеднён" носителями тока (электронами проводимости и дырками) и обладает высоким удельным электросопротивлением. Заряженная частица, проникая в него, создаёт дополнит, (неравновесные) электронно-дырочные пары, к-рые под действием электрич. поля "рассасываются", перемещаясь к электродам П. д. В результате во внешней цепи П. д. возникает электрич. импульс, к-рый далее усиливается и регистрируется (см. рис.).

Полупроводниковые детекторы; штриховкой выделена чувствительная область; n-область полупроводника с электронной проводимостью, р- с дырочной, i - с собственной проводимо-стями; а - кремниевый поверхностно-барьерный детектор; б- дрейфовый германий-литиевый планарный детектор; в - гер. маний-литиевый коаксиальный детектор.

Заряд, собранный на электродах П. д., пропорционален энергии, выделенной частицей при прохождении через обеднённый (чувствительный) слой. Поэтому, если частица полностью тормозится в чувствит. слое, П. д. может работать как спектрометр. Средняя энергия, необходимая для образования 1 электронно-дырочной пары в полупроводнике, мала (у Si 3,8 эв, у Ge ~ 2,9 эв). В соч-етании с высокой плотностью вещества это nosj воляет получить спектрометр с высокой разрешающей способностью (~0,1% для энергии ~ 1 Мэв). Если частица полностью тормозится в чувствит. слое, то эффективность её регисграции ~100%. Большая подвижность носителей тока в Ge и Si позволяет собрать заряд за время ~ 10 нсек, что обеспечивает высокое временное разрешение П.д. В первых П. д. (1956-57) использовались поверхностно-барьерные (см. Шотки диод) или сплавные р-n-переходы в Ge. Эти П. д. приходилось охлаждать для снижения уровня шумов (обусловленных обратным током), они имели малую глубину чувствит. области и не получили распространения. Практич. применение получили в 60-е гг. П. д. в виде поверхностно-барьерного перехода в Si (рис., а). Глубина чувствит. области W в случае поверхностно-барьерного П. д. определяется величиной запирающего напряжения V:
[2018-19.jpg]

Здесь р - удельное сопротивление полупроводника в ом*см. Для поверхностно-барьерных переходов в Si с р = = 104 ом*см при V = (1-2)102e, W =1 мм. Эти П. д. имеют малые шумы при комнатной темп-ре и применяются для регистрации короткопробежных частиц и для измерения удельных потерь энергии dE/dx.

Для регистрации длиннопробежных частиц в 1970-71 были созданы П. д. р - i -n - типа (рис., б). В кристалл Si р-типа вводится примесь Li. Ионы Li движутся в р-области перехода (под действием электрич. поля) и, компенсируя акцепторы, создают широкую чувствит. г-область собственной проводимости, глубина к-рой определяется глубиной диффузии ионов Li и достигает 5 мм. Такие дрейфовые кремний-литиевые детекторы используются для регистрации протонов с энергией до 25 Мэв, дейтронов-до 20 Мэв, электронов - до 2 Мэв и др. Дальнейший шаг в развитии П. д. был сделан возвращением к Ge, обладающему большим порядковым номером Z и, следовательно, большей эффективностью для регистраци