БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121 Л., 1957; Шок ли В., Теория электронных полупроводников, пер. с англ., М., 1953; Смит Р., Полупроводники, пер. с англ., М., 1962; Полупроводники. Сб. ст., под ред. Н. Б. Хеннея, пер. с англ., М., 1962; Ансельм А. И., Введение в теорию полупроводников, М. - Л., 1962; Б л а т т Ф., Физика электронной проводимости в твердых телах, пер. с англ., М., 1971; Стильбанс Л. С., физика полупроводников, М., 1967; П и к у с Г. Е., Основы теории полупроводниковых приборов, М., 1965; Гутман ф., Лаионс Л., Органические полупроводники, пер. с англ., М., 1970; Остин И., Илуэлл Д., Магнитные полупроводники, "Успехи физических наук", 1972, т. 106, в. 2; Алексеев А. А., Андреев А. А., Прохоренко В, Я., Электрические свойства жидких металлов и полупроводников, там же т. 106, в. 3.

ПОЛУПРОВОДНИКИ АМОРФНЫЕ, вещества в твёрдом аморфном состоянии, обладающие свойствами полупроводников (см. Аморфное состояние). П. а. разделяют на 3 группы: ковалентные (аморфные Ge и Si, InSb, GaAs и др.), халькоге-яидные стёкла (напр., As31Ge30Se21Te18), оксидные стёкла (напр., V2O5 - P2O5) и диэлектрич. плёнки (SiOх, A12O3, Si3N4 и др.).

Энергетич. спектр П. а. отличается от кристаллич. П. наличием "хвостов" плотности электронных состояний, проникающих в запрещённую зону. По одной из теорий, П. а. следует рассматривать как сильно легированный и сильно компенсированный полупроводник, у к-рого "дно" зоны проводимости и "потолок" валентной зоны флуктуируют, причём это - крупномасштабные флуктуации порядка ширины запрещённой зоны. Электроны в зоне проводимости (и дырки в валентной зоне) разбиваются на систему "капель", расположенных в ямах потенциального рельефа и разделённых высокими барьерами. Электропроводность в П. а. при очень низких температурах осуществляется посредством подбарьерного туннелирования электронов между ямами аналогично прыжковой проводимости. При более высоких темп-pax электропроводность обусловлена тепловым "забросом" носителей на высокие энергетич. уровни.

П. а. имеют различные практич. применения. Халькогенидные стёкла благодаря прозрачности для инфракрасного излучения, высокому сопротивлению и высокой фоточувствительности применяются в передающих телевизионных трубках, а также для записи голограмм (см. Голография). Диэлектрические плёнки применяются также в структурах МДП (металл - диэлектрик - полупроводник).

В системах металл - плёнка П. а.-металл при достаточно высоком напряжении (выше порогового) возможен быстрый (~10-10сек) переход (переключение) П. а. из высокоомного состояния в низкоомное. В частности, существует переключение с "памятью", когда высокопроводящее состояние сохраняется и после снятия напряжения (память "стирается" обычно сильным и коротким импульсом тока). Низкоомное состояние в системах с памятью связано с частичной кристаллизацией П. а.

Лит.: Мотт Н., Дэвис Э., Электронные процессы в некристаллических веществах, пер. с англ., М., 1974.

В. М. Любим, В. Б. Сандомирский.

ПОЛУПРОВОДНИКИ ОРГАНИЧЕСКИЕ, твёрдые органические вещества, к-рые имеют (или приобретают под влиянием внешних воздействий) электронную или дырочную проводимости (см. Полупроводники). П. о. характеризуются наличием в молекулах системы сопряжения (см. Валентность). Носители тока в П. о. образуются в результате возбуждения л-электронов, делокализованных по системе сопряжённых связей. Энергия активации, необходимая для образования носителей тока в П. о., снижается по мере увеличения числа сопряжений в молекуле и в полимерах может быть порядка тепловой энергии.

К П. о. относятся органические красители (напр., метиленовый голубой, фталоцианины), ароматические соединения (нафталин, антрацен, виолантрен и др.), полимеры с сопряжёнными связями, некоторые природные пигменты (хлорофилл, р-каротин и др.), молекулярные комплексы с переносом заряда, а также ион-радикальные соли. П. о. существуют в виде монокристаллов, поликристаллическнх или аморфных порошков и плёнок. Величины удельного сопротивления р при комнатной темп-ре у П. о. лежат в диапазоне от 1018 ом*см (нафталин, антрацен) до 10-2ом*см (ион-радикальные соли, см. рис.). Наиболее проводящими П. о. являются ион-радикальные соли, на основе анион-радикала тетрацианхинодиметана. Они обнаруживают электропроводность метал-лич. характера. У П. о. с низкой электропроводностью наблюдается явление фотопроводимости.

Удельное электросопротивление р и энергия активации UA электропроводности органических и неорганических полупроводников,

П. о. обладают особенностями, к-рые определяются молекулярным характером их структуры и слабым межмолекулярным взаимодействием: 1) поглощение света вызывает возбуждение молекул, к-рое может мигрировать по кристаллу в виде экситонов; 2) образование носителей тока под действием света связано с распадом экситонов на поверхности кристалла, дефектах его структуры, примесях, при взаимодействии экситонов друг с другом, а также с автоионизацией высоковозбуждённых молекул; 3) зоны проводимости узки (~0,1 эв), подвижность носителей тока, как правило, мала (~1 смг!в*сек); 4) наряду с зонным механизмом электропроводности осуществляется прыжковый механизм. В кристаллах ион-радикальных солей межмолекулярное взаимодействие сильно анизотропно, что приводит к высокой анизотропии оптич. и электрич. свойств и позволяет рассматривать этот класс П. о. как квазиодномерные системы.

П. о. находят применение в качестве светочувствительных материалов (напр., для процессов записи информации), в микроэлектронике, для изготовления различного рода датчиков. Исследование П. о. важно для понимания процессов преобразования и переноса энергии в сложных физико-химич. системах и в особенности в биологич. тканях. С П. о., в частности с ион-радикальными солями, связана перспектива создания сверхпроводников с высокой критической темп-рой.

Лит.: Органические полупроводники, 2 изд., М., 1968; Богуславский Л. И., Ванников А. В., Органические полупроводники и биополимеры, М., 1968; Гутман Ф., Лаионс Л., Органические полупроводники, пер. с англ., М., 1970.

Л. Д. Розенштейн, Е. Л. Франкевич.,

ПОЛУПРОВОДНИКОВАЯ ЭЛЕКТРОНИКА, отрасль электроники, занимающаяся исследованием электронных процессов в полупроводниках и их использованием- гл. обо. в целях преобразования и передачи информации. Именно с успехами П. э. связаны, в основном, высокие темпы развития электроники в 50-70-х гг. 20 в. и её проникновение в автоматику, связь, вычислит, технику, системы управления, астрономию, физику, медицину, в исследования космич. пространства, в быт и т. д.

Краткая историческая справка. Осн. вехи развития П. э.- открытие фотоэффекта в селене (У. Смит, США, 1873), открытие односторонней проводимости контакта металла с полупроводником (К. Ф. Браун, 1874), использование кристаллич. полупроводников, напр. галенита (PbS), в качестве детекторов для демодуляции радиотелеграфных и радиотелефонных сигналов (1900-05), создание меднозакисных (купроксных) и селеновых выпрямителей тока и фотоэлементов (1920-26), использование кристаллич. детекторов для усиления и генерирования колебаний (О. В. Лосев, 1922), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948), создание планарной технологии (1959), появление интегральной электроники и переход к микроминиатюризации электронного оборудования (1959-61). Большой вклад в создание П. э. внесли сов. учёные - физики и инженеры (А. Ф. Иоффе, Н. П. Сажин, Я. И. Френкель, Б. М. Вул, В. М. Тучкевич, Г. Б. Абду-лаев, Ж. И. Алфёров, К. А. Валиев, Ю.П. Докучаев, Л. В. Келдыш, С. Г. Калашников, В. Г. Колесников, А. В. Кра-силов, В. Е. Лашкарёв, Я. А. Федотов и мн. др.).

Физические основы П. э. Развитие П. э. стало возможным благодаря фундаментальным научным достижениям в области квантовой механики, физики твёрдого тела и физики полупроводников.

В основе работы полупроводниковых (ПП) электронных приборов и устройств лежат следующие важнейшие свойства полупроводников и электронные процессы в них: одновременное существование носителей заряда двух знаков (отрицательных - электронов проводимости и положительных - дырок); сильная зависимость величины и типа электропроводности от концентрации и типа примесных атомов; высокая чувствительность к воздействию света и тепла, чувствительность к действию магнитного поля и механич. напряжений; эффект односторонней проводимости при протекании тока через запирающий слой электронно-дырочного перехода (р - n-перехода) или Шотки барьера, нелинейность вольтам-перных характеристик таких слоев, введение (инжекция) неосновных носителей, нелинейная ёмкость р - n-перехода; туннельный переход носителей сквозь потенциальный барьер (см. Туннельный эффект), лавинное размножение носителей в сильных электрич. полях; переход носителей из одного минимума энергетия. зоны в другой с изменением их эффективной массы и подвижности и др.

Один из эффектов, наиболее широко используемых в П. э., - возникновение р - га-перехода на границе областей полупроводника с различными типами проводимости (электронной - в га-области, дырочной - в р-области); его осн. свойства - сильная зависимость тока от полярности напряжения, пр