БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121экситоном. Др. тип экситона представляет собой возбуждённое состояние атома диэлектрика, перемещающееся в кристаллич. решётке.

Методы квантовой теории поля в С. ф. При решении задач квантовой С. ф., прежде всего при исследовании свойств квантовых жидкостей, электронов в металлах и магнетиков, важное значение имеют методы квантовой теории поля, введённые в С. ф. сравнительно недавно. Осн. роль в этих методах играет функция Грина G макроскопич. системы, аналогичная функции Грина в квантовой теории поля. Она зависит от энергии [$\varepsilon$] и импульса р, закон дисперсии квазичастиц [$\varepsilon$]([$\rho$]) определяется из уравнения:

[G ([$\varepsilon$], р)]-1 = 0, (21)

т. е. энергия квазичастицы определяется полюсом функции Грина. Существует регулярный метод вычисления функций Грина в виде ряда по степеням энергии взаимодействия между частицами. Каждый член этого ряда содержит многократные интегралы по энергиям и импульсам от функций Грина невзаимодействующих частиц и может быть изображён графически в виде диаграмм, аналогичных Фейнмана диаграммам в квантовой электродинамике. Каждая из этих диаграмм имеет определённый физический смысл, что позволяет отделить в бесконечном ряду члены, ответственные за интересующее явление, и просуммировать их. Существует также диаграммная техника для вычисления темп-рных функций Грина, позволяющих вычислять термодинамич. величины непосредственно, без введения квазичастиц.

Упомянутые в разделе о жидкости методы, использующие многочастичные функции распределения квазнчастнц, во многих отношениях близки к методам квантовой теории поля. Использование этих функций всегда основано на приближённом "расцеплении" - выражении функции более высокого порядка через функции более низкого.

Фазовые переходы. При непрерывном изменении внешних параметров (напр., давления или темп-ры) свойства системы могут при нек-рых значениях параметров измениться скачкообразно, т. е. происходит фазовый переход. Фазовые переходы делятся на переходы первого рода, сопровождающиеся выделением скрытой теплоты перехода и скачкообразным изменением объёма (к ним относится, напр., плавление), и переходы второго рода, в к-рых скрытая теплота и скачок объёма отсутствуют (напр., переход в сверхпроводящее состояние). Статистич. теория фазовых переходов составляет важную, но ещё далёкую от завершения область С. ф. Наибольшую трудность для теоретич. исследования представляют при этом свойства вещества вблизи линии фазового перехода второго рода и вблизи критической точки фазового перехода первого рода. С матем. точки зрения термодинамич. функции системы имеют здесь особенности. Вблизи этих точек происходят своеобразные критические явления. В то же время здесь аномально возрастают флуктуации, и рассмотренные выше приближённые методы С. ф. оказываются неприменимыми. Поэтому важную роль играет небольшое число точно решаемых моделей, в к-рых есть переходы (напр., т. н. модель Йзинга).

Флуктуации. В основе С. ф. лежит тот факт, что физ. величины, характеризующие макроскопич. тела, с большой точностью равны своим ср. значениям. Это равенство является всё же приближённым, в действительности все величины испытывают малые беспорядочные отклонения от ср. значений - фчуктуации. Существование флуктуации имеет большое принципиальное значение, т. к. прямо доказывает статистнч. характер термодинамич. закономерностей. Кроме того, флуктуации играют роль шума, мешающего физ. измерениям и ограничивающего их точность. Флуктуации нек-рсш величины х около её ср. значения х характеризуются ср. квадратом флуктуации

([$\Delta$]х)2 = (х-х)2 = х2 - х2.

В подавляющем большинстве случаев величина х испытывает флуктуации порядка корень ([$\Delta$]х)2, существенно большие флуктуации встречаются крайне редко. Знание функции распределения системы позволяет вычислить ср. квадрат флуктуации точно так же, как н ср. значение любой физ. величины. Малые флуктуации термодинамич. величин можно вычислить, используя статистич. истолкование энтропии. Согласно (10), вероятность неравновесного состояния системы с энтропией S пропорциональна eslk. Это приводит к формуле
[2433-6.jpg]

Напр., ср. квадраты флуктуации объёма и темп-ры тела равны:
[2433-7.jpg]

Из этих формул видно, что относит. флуктуации объёма и флуктуации

темп-ры обратно пропорциональны кореньN, где N - число частиц в теле. Это и обеспечивает малость флуктуации для мак-роскопич. тел. Связь между флуктуация-ми различных величин хi, хк характеризуется функцией [$\Delta$]хi[$\Delta$]хк. Если флуктуации величин хi и хк статистически независимы, то [$\Delta$]хi[$\Delta$]хк = [$\Delta$]хi*[$\Delta$]хк= О.

Под хi и хкможно понимать и значения одной и той же величины, напр, плотности, в различных точках пространства. Тогда эта функция имеет смысл пространственной корреляционной функции. С увеличением расстояния между точками корреляционная функция стремится к нулю (обычно экспоненциально), т. к. флуктуации в далёких точках пространства происходят независимо. Расстояние, на к-ром эта функция существенно убывает, наз. корреляционным радиусом.

Временной ход флуктуации и спектральное распределение флуктуационного шума описываются временной корреляционной функцией [$\varphi$](t), в к-рой усредняются флуктуации величины, взятые в различные моменты времени t:

[$\varphi$](t1-t2) = [$\Delta$]х (t1)[$\Delta$]х(t2).

Важную роль в теории флуктуации играет т. н. флуктуационно-диссипативная теорема, связывающая флуктуации в системе с изменением её свойств под влиянием определённых внешних воздействий. Простейшее соотношение такого рода можно получить, рассматривая флуктуации гармонич. осциллятора с потенц. энергией 1/2 m[$\omega$]o2 (х - х)2, где т - масса осциллятора, соо - его собств. частота. Вычисление с помощью формулы (22) даёт: ([$\Delta$]х)2 = kT/т[$\omega$]o2. С др. стороны, если на осциллятор действует сила f, ср. значение х смещается на величину [$\delta$]х = = f/m[$\omega$]o2, так что
[2433-8.jpg]

и флуктуация х действительно связана с возмущением под влиянием силы f. В общем случае флуктуационно-диссипативная теорема применима, если для х существует "обобщённая сила" f, к-рая входит в оператор энергии системы (гамильтониан; см. Квантовая механика) в виде члена -fx, где х - квантовоме-ханнч. оператор, соответствующий величине х. Включение силы f приведёт к изменению ср. значения х на величину [$\delta$][$\chi$], причём, если f зависит от времени как е-1[$\omega$]t, это изменение можно записать в виде:

[$\delta$]х =[$\alpha$]([$\omega$]) f;

комплексная величина [$\alpha$]([$\omega$]) наз. обобщённой восприимчивостью системы. Теорема утверждает, что фурье-образ корреляционной функции
[2433-9.jpg]

выражается через [$\alpha$] след, образом:
[2433-10.jpg]

(Im означает мнимую часть функции). Частным случаем (25) является Найквиста формула.


С. ф. неравновесных процессов. Всё большее значение приобретает кинетика физическая - раздел С. ф., изучающий процессы в системах, находящихся в неравновесных состояниях. Здесь возможны две постановки вопроса. Во-первых, можно рассматривать систему в нек-ром неравновесном состоянии и следить за её переходом в состояние равновесия. Во-вторых, можно рассматривать систему, неравновесное состояние к-рой поддерживается внеш. условиями, напр, тело, в к-ром задан градиент темп-ры, протекает электрич. ток и т. п., или тело, находящееся в переменном внеш. поле.

Если отклонение от равновесия мало, неравновесные свойства системы описываются т. н. кинетическими коэффициентами. Примерами таких коэффициентов являются коэффициенты вязкости, теплопроводности и диффузии, электропроводность металлов и т. п. Эти величины удовлетворяют принципу симметрии кинетич. коэффициентов, выражающему симметрию уравнений механики относительно изменения знака времени (см. Онсагера теорема). В силу этого принципа, напр., электропроводность кристалла описывается симметричным тензором.

Описание сильно неравновесных состояний, а также вычисление кинетич. коэффициентов производятся с помощью кинетического уравнения. Это уравнение представляет собой интегро-дифференциальное уравнение для од-ночастичной функции распределения (в квантовом случае - для одночастичной матрицы плотности, или статистического оператора). Такое замкнутое, т. е. не содержащее др. величин, уравнение невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетическое уравнение Болъцмана, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого уравнения зависит от эффективного сечения рассеяния молекул друг на друге. Если это сечение известно, уравнение можно решать, разлагая искомую функцию по ортогональным полиномам (см. Ортогональная система функций). Таким способом можно вычислить кинетич. коэффициент