БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121тов к действию ионизирующих излучений. Облучение вызывает в клетках и организмах различные изменения (см. Биологическое действие ионизирующих излучений), степень проявления к-рых не всегда коррелирует между собой. Поэтому при оценке Р. важно учитывать, какой критерий используется для её характеристики. Обычно таким критерием служит летальное действие излучений - инактивация или гибель клеток и гибель многоклеточных организмов. Летальное действие излучений также может проявляться в разных формах: в случае клеток - гибель их в интерфазе после одного или нескольких делений (см. Митоз), в случае многоклеточных организмов - гибель в разные сроки после облучения. Чтобы оценить Р., биол. объекты облучают разными дозами, определяют процент выживших и строят кривые выживания. Для клеток такие кривые изображают обычно в полулогарифмич. масштабе (рис. 1), для многоклеточных организмов - в линейном (рис. 2). Пользуясь кривыми выживания, находят ЛД50- дозу, после к-рой выживает 50% особей, а также значения DQ и Do, отражающие величину "плеча" и наклон прямолинейной составляющей таких кривых (значение Do равно дозе, уменьшающей выживаемость в е = 2,7 раза на прямолинейной составляющей кривой выживания). В экспериментах с млекопитающими ЛД50 определяют обычно для разных сроков после облучения - 3, 5, 15, 30 и т. д. суток. Получаемые значения ЛД50/5, ЛД50/30 и т. п. отражают Р. тех систем организма, преимущественное поражение к-рых ответственно за его гибель в течение того или иного отрезка времени. Так, гибель мышей и крыс в течение первых 3-5 сут после облучения связана с повреждением кишечного тракта, а в интервале между 5 и 30 сут - с повреждением системы кроветворения. Мерой Р. обычно служат ЛД50 или Do.

[21295d-1.jpg]
Рис. 1. Характерные кривые выживания: 1 - бактерии и гаплоидные дрожжи; 2 - диплоидные дрожжи и клетки млекопитающих; 3 - инфузории и амёбы. Стрелками показан метод определения DO и DQ. Ось абсцисс - доза облучения (условные единицы); ось ординат - выживаемость (% ). Масштаб полулогарифмический.

Р. клеток может различаться в сотни и тысячи раз: ЛД50 для клеток млекопитающих - 200-350 рад, для бактерий и дрожжей - 10-45 тыс. рад, для инфузорий и амёб - 300 - 500 тыс. рад. Р. обусловливается первичной поражаемостью жизненно важных структур клеток, их способностью к восстановлению (репарации) и условиями культивирования. В общем случае Р. клеток растёт с увеличением содержания ДНК, числа и размеров хромосом и уменьшается с увеличением числа хромосомных наборов (плоидности). Вместе с тем на Р. клеток влияют их хим. состав (напр., содержание эндогенных тиолов), физиол. состояние (фаза клеточного цикла, фаза дифферищировки), условия во время облучения (могут оказывать радиозащитное или радиосенсибилизирующее действие) и условия в пострадиационный период (могут способствовать или препятствовать осуществлению репарации и проявлению первичных повреждений). Клетки с нарушенной системой репарации отличаются повышенной Р. Мутации в отд. генах могут в десятки раз изменять Р. клеток, влияя на различные стороны метаболизма. Т. о., Р. клеток зависит от мн. факторов, удельный вес которых у разных объектов различен. Р. многоклеточных растений и животных также широко варьирует. Так, для семян гороха и кукурузы ЛД50 равна 5-20 тыс. рад, для семян клевера и редиса - 100-250 тыс. рад (для проростков этих же растений ЛД50 составляет 250-700 рад)', для взрослых насекомых ЛД50 - 30-50 тыс. рад, а для млекопитающих - от 350-700 до 1000-1200 рад. Р. растений и животных обусловливается гл. обр. Р. их клеток (в случае млекопитающих - Р. стволовых клеток их кроветворных органов и желудочно-кишечного тракта) и факторами, влияющими на успешность регенерации повреждённых облучением органов и тканей за счёт размножения выживших клеток. На проявление Р. влияют условия содержания после облучения, способствующие или препятствующие выздоровлению от лучевой болезни. Помимо биол. особенностей и условий среды, Р. клеток и организмов зависит от физич. свойств излучений, мощности дозы и особенностей фракционирования облучения. Разработаны способы радиосенсибилизации, т. е. искусственного увеличения Р. биол. объектов. Изучение различных аспектов Р. важно для разработки эффективных методов лечения лучевых повреждений, радиотерапии раковых опухолей, а также в случаях применения излучений для радиостимуляции растений и в искусственном мутагенезе.

[21295d-2.jpg]

Рис. 2. Кривые выживания, типичные для собак (1), мышей (2) и крыс (3). Стрелками показан метод определения ЛД50. Ось абсцисс - доза облучения (рад); ось ординат - выживаемость (%). Масштаб линейный.

Лит.: Основы радиационной биологии, М., 1964; Тимофеев-Ресовский Н. В., Иванов В. И., Корогодин В. И., Применение принципа попадания в радиобиологии, М., 1968; Кузин А. М., Структурно-метаболическая гипотеза в радиобиологии, М., 1970; Акоев И. Г., Максимов Г. К., Малышев В. М., Лучевое поражение млекопитающих и статистическое моделирование. М., 1972; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

В. И. Корогодин.

РАДИОЭКОЛОГИЯ, раздел экологии, изучающий концентрацию и миграцию радиоактивных нуклидов в биосфере и влияние ионизирующих излучений на организмы, их популяции и сообщества - биоценозы. Элементы Р. содержатся в работах по биогеохимии радиоактивных веществ В. И. Вернадского (20-е гг. 20 в.), в монографии чешских учёных Ю. Стокласа и Ж. Пенкава "Биология радия и урана" (1932). Окончательно Р. сформировалась к сер. 50-х гг. 20 в. в связи с созданием атомной пром-сти и эксперимент, взрывами ядерных бомб, вызвавшими глобальное загрязнение окружающей среды радионуклидами стронция, цезия, плутония, углерода и др.

Р. обычно имеет дело с весьма малыми мощностями хронического внеш. и внутр. облучения организма. В природных условиях организмы подвергаются облучению за счёт естественного фона радиоактивного (космические лучи, излучения природных радионуклидов U, Ra, Th и др.), а также за счёт радиоактивного загрязнения биосферы искусственными радионуклидами. Однако мн. растения и животные способны накапливать в жизненно важных органах и тканях радионуклиды, что влияет на их миграцию в биосфере и приводит к значит. усилению внутр. облучения организма (см. Аккумуляция радиоактивных веществ). Повышенные дозы облучения, воздействуя на генетич. аппарат клеток (см. Генетическое действие излучений), приводят к возрастанию темпов наследственной изменчивости. Более высокие дозы облучения понижают жизнеспособность организмов (вплоть до вымирания наиболее чувствительных к ионизирующим излучениям популяций) и тем самым вызывают изменение структуры биоценозов и обеднение межвидовых взаимоотношений в них. Выявление закономерностей, лежащих в основе этих процессов, имеет большое значение для ряда отраслей нар. х-ва. Так, особый практич. интерес представляют следующие изучаемые Р. проблемы: миграция радионуклидов в пищевых цепях организмов (в т. ч. с.-х. животных и человека); обрыв или ослабление экологич. связей; дезактивация с.-х. земель, водоёмов и т. п., загрязнённых радионуклидами; поиск поверхностно залегающих месторождений радиоактивных руд (по радиоактивности растений-индикаторов); выявление территорий суши и акваторий, загрязнённых искусственными радионуклидами. Многообразие практич. аспектов Р. привело к её подразделению на морскую, пресноводную, наземную (в т. ч. лесную, сельскохозяйственную), а также ветеринарную и граничащую с ней гигиену радиационную. Результаты радио-экологич. исследований оказали большое влияние на принятие междунар. конвенций, направленных на ограничение испытаний ядерного оружия и отказ от его применения в условиях войны. На основе рекомендаций Р. в пром-сти разрабатываются и внедряются замкнутые циклы охлаждения ядерных реакторов, улавливатели радиоактивных аэрозолей, методы хранения и обезвреживания радиоактивных отходов, исключающие их попадание в окружающую среду. См. также статью Радиобиология и лит. при ней. Мит.: Передельский А. А., Основания и задачи радиоэкологии, "Журнал общей биологии", 1957, т. 18, № 1; Поликарпов Г. Г., Радиоэкология морских организмов, М., 1964; Методы радиоэкологических исследований, М., 1971; Тихомиров Ф. А., Действие ионизирующих излучений на экологические системы, М., 1971; Радиоэкологические исследования в природных биогеоценозах, М., 1972; Радиобиология и радиоэкология сельскохозяйственных животных, М., 1973; Odum E. P., Ecology and the atomic age, "Association of southeastern Biologist Bulletin", 1957, v. 4; Radioecology, ed. V. Schultz u A. W. Klement, N. Y., 1963; Ecological aspects of the nuclear age; selected readings in radiation ecology, eds V. Schultz and F. W. Whicker, Oak Ridge, 1972. А. А. Передельский.

РАДИОЭЛЕКТРОНИКА, термин, объединяющий обширный комплекс областей науки и техники, связанных гл. обр. с проблемами передачи, приёма и преобразования информации с помощью электромагнитных волн. Появился в 50-х гг. 20 в. и является в нек-рой степени условным. Р. охватывает радиотехнику и электронику, а также ряд новых областей, выделившихся в результате их развития и дифференциации - квантовую электронику, оптоэлектронику, полупр