БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121ти нуклидов, распад к-рых сопровождается каскадным излучением, применяют совпадений метод. Установки, включающие два детектора, настраивают так, чтобы раздельно регистрировались излучения разного рода или разной энергии. При этом измеряют активность источника с нуклидом, распад к-рого сопровождается каскадным испусканием именно этих излучений. Активность определяют по формуле:
[2127-18.jpg]

где N1 и N2 - скорости счёта, получаемые с каждым из детекторов, N12 - скорость счёта совпадений, a F - нек-рая функция от (N1/N2), стремящаяся к 1 при (N2/N1)->1. В наиболее простых случаях F(N2/N12) = 1.

Если источники обладают значительной активностью, применяют калориметрич. метод, основанный на измерении теплового эффекта, вызванного распадом нуклида в образце. Зная среднюю энергию, поглощаемую в системе образец - калориметр при одном акте распада, и общую интенсивность выделения энергии источником, рассчитывают активность нуклидов. Калориметрич. метод является одним из самых старых, но им широко пользуются до сих пор.

Если удаётся выделить нуклид в макроколичествах, его активность может быть найдена по формуле:

А = ЛМ,

где М - число атомов нуклида в образце, Л - постоянная распада (в сек-1), Т - период полураспада (в сек). Этот метод наз. весовым, т. к. М рассчитывают, исходя из веса нуклидов в источнике. Весовой метод наз. масс-спектрометрическим или методом эмиссионного спектрального анализа, если относительное содержание нуклида в источнике определяют с помощью масс-спектрометра или эмиссионного спектрального анализа.

Массовые измерения активности осуществляют в основном относительными методами, сравнивая измеряемые источники с образцовыми (откалиброванными с высокой точностью радиоактивными растворами, жидкостями, газами, при создании к-рых используют методы абс. измерений активности). Относительные измерения активности нуклидов, распад к-рых сопровождается у-излучением, обычно осуществляют с помощью ионизационных камер, сцинтилляционных счётчиков и полупроводниковых детекторов. В случае В-излучающих нуклидов используют ионизационные камеры и газоразрядные счётчики. Массовые измерения активности низкоэнергетичных В-излучателей (14С, 3Н и др.) осуществляют методом жидкостного сцинтилляционного счёта.

Р. широко используется при решении самых разнообразных задач - от исследований с помощью меченых атомов (см. Изотопные индикаторы) доопределения возраста горных пород (см. Геохронология) и в археологии.

Лит.: Караваев Ф. М., Измерения активности нуклидов, М., 1972; Коробков В. И., Лукьянов В. Б., Методы приготовления препаратов и обработки результатов измерений радиоактивности, М., 1973; Туркин А. Д., Дозиметрия радиоактивных газов, М., 1973; Ванг Ч., Уиллис Д., Радиоиндикаторный метод в биологии, пер. с англ., М., 1969; Техника измерений радиоактивных препаратов. Сб. ст., М., 1962; Манн У. Б., Селигер Г. Г., Приготовление и применение эталонных радиоактивных препаратов, [пер. с нем.], М., 1960. В. А. Баженов.
21_37.htm
РАДИОТЕЛЕСКОП, астрономич. инструмент для приёма собственного радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования его характеристик: координат источников, пространственной структуры, интенсивности излучения, спектра и поляризации. Р. состоит из антенной системы и радиоприёмного устройства - радиометра. Конструкции антенн Р. отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Для направления антенн в исследуемую область неба их устанавливают обычно на азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (т. н. полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже совершенно неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателя, воспринимающего отражённое от антенны радиоизлучение. Для наблюдения на коротких волнах распространены зеркальные параболич. антенны, устанавливаемые на поворотных устройствах, служащих для наведения Р. на источник радиоизлучения; по принципу действия такие Р. аналогичны оптич. телескопам-рефракторам. Часто используются комбинации ряда зеркальных антенн, соединяемых кабельными линиями в единую систему,- т. н. решётки. Для наблюдения на длинных волнах используются решётки из большого числа элементарных излучателей - диполей.

Р. должен обладать высокой чувствительностью, обеспечивающей надёжную регистрацию возможно более слабых плотностей потока радиоизлучения, и хорошей разрешающей способностью (разрешением), позволяющей наблюдать возможно меньшие пространственные детали исследуемых объектов. Минимальная обнаруживаемая плотность потока ДР определяется соотношением: где Р - мощность собственных шумов P., S - эффективная площадь (собирающая поверхность) антенны, дельта f- полоса принимаемых частот, t - время накопления сигнала. Для улучшения чувствительности Р. увеличивают его собирающую поверхность и применяют малошумящие приёмные устройства на основе мазеров, параметрич. усилителей и т. п. Разрешающая способность Р. (в радианах) 0~~Л/D, где Л - длина волны, D - линейный размер апертуры антенны. Крупнейшие зеркальные антенны (диаметром до 100 м на сантиметровых волнах) обладают разрешением ок. 1', сравнимым с разрешением невооружённого глаза. Трудности создания Р. больших размеров со сплошным зеркалом вынуждают широко использовать решётки, а для получения двумерного разрешения - крестообразные, кольцевые и т. п. антенны с незаполненной апертурой. Наиболее радикальным путём получения высокого разрешения в радиоастрономии является составление (синтез) антенного устройства большой апертуры с помощью неск. сравнительно небольших антенн, к-рые в процессе наблюдений перемещаются относительно друг друга в соответствии с заданными движениями изображаемого или фиктивного большого антенного устройства. Существующие Р. апертурного синтеза позволяют получать радиоизображения с разрешением ок. 1". При использовании в системе синтеза радиоинтерферометров со сверхбольшими базами можно ожидать разрешающей способности при получении изображений объектов порядка 10-2 - 10-4 секунды дуги.

[2128-6.jpg]



Радиоизлучение космич. происхождения (от Млечного Пути) на волне 14,6 м впервые было зарегистрировано К. Янским (США) в 1931 с помощью антенны, предназначенной для исследования радио-помех от гроз. Первый Р. для исследования космич. радиоизлучения - рефлектор диаметром 9,5 м - построен Г. Ребсром (США) в 1937; с помощью этого инструмента был проведён ряд успешных обзоров неба. Быстрое развитие Р. началось в 40-х гг. 20 в.: в Австралии в 1948 был сооружён первый радиоинтерферометр, а в 1953 - первый крестообразный Р. Крупный полноповоротный параболоид (D = 76 м) впервые сооружён в Великобритании в 1957. Принцип получения изображения с высоким разрешением методом последовательного синтеза апертуры развивается с 1956 в Кембридже (Великобритания). В 1967 в США и Канаде проведены первые наблюдения на интерферометрах с независимой записью сигналов и сверхбольшими базами. К 1975 лучшие по точности полноповоротные параболоиды установлены на радиоастрономич. обсерваториях в Эффельсберге, ФРГ (D = 100 м, длины волн до X = 2 см); Пущине и Симеизе, СССР (D = 22 м, X = 0,8 см); Китт-Пик, США (D = 11 м, X = 0,3 см.). Р. с неподвижной сферич. чашей сооружён в кратере вулкана в Аресибо, Пуэрто-Рико (D = 300 м, X = 10 см). Этот Р. обладает очень большой собирающей поверхностью и используется как локатор для картографирования планет. Крестообразные и кольцевые Р. функционируют в Молонгло, Австралия (крест из 2 сетчатых параболич. цилиндров 1600 X X 13 л, X = 75 см и 3 м); Харькове, СССР (Т-образная антенна 1800 X 900 м, состоит из 2040 широкополостных вибраторов, X = 10-30 м); Пущине, СССР (крест из 2 цилиндров 1000 X 1000 м, Л = 2-10 м); Калгурре, Австралия (96 параболоидов диаметром 13 м, расположенных по кольцу D = 3 км, X = 3,7 м); РАТАН-600 в СССР (рефлекторный радиотелескоп с отражающей поверхностью в виде кольца D = 600 м и шириной 7,5 м, диапазон волн 0,8-30 см). Крупнейшие Р. апертурного синтеза - в Кембридже, Великобритания (X = 5 см), и Вестерборке, Нидерланды (X = 6 см), имеют разрешающую способность ок. 3". См. также Радиоастрономические обсерватории.




Система апертурного синтеза, использующая вращение Земли. Состоит из трёх параболоидов вращения - двух неподвижных и одного подвижного.

Лит.: Есепкина Н. А., Корольков Д. В., Парийский Ю. Н., Радиотелескопы и радиометры, М., 1973; Xристиансен У., Хегбом И., Радиотелескопы, пер. с англ., М., 1972.

Ю. Н. Парийский.

РАДИОТЕЛЕФОННАЯ СВЯЗЬ, электрич. связь, при к-рой с помощью радиоволн передаются телефонные сообщения. В отличие от радиовещания, в Р. с. осуществляется двусторонний обмен сообщениями между 2 корреспондентами - либо одновременно (дуплексная связь), либо поочерёдно (симплексная связь).

В простейших системах Р. с., осуществляющих как симплексную, так и дуплексную связь,