БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121к значениям энергий электронов в атоме, поправкам к сечению упругого рассеяния на большие углы, ещё не наблюдённому рассеянию света на свете и кулоновском поле и т. п. См. Квантовая теория поля.

ПОЛЯРИЗАЦИЯ ВОЛН, нарушение осевой симметрии распределения возмущений (напр., смещений и скоростей в механич. волне или напряжённостей электрич. и магнитных полей в электромагнитных волнах) в поперечной волне относительно направления её распространения; см. Волны. Наибольшее значение П. в. имеет в случае электромагнитных волн оптич. диапазона. Подробнее см. Поляризация света.

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ. 1) смещение положительных и отрицательных электрич. зарядов в диэлектриках в противоположные стороны. П. д. происходит под действием электрич. поля или нек-рых др. внешних факторов, напр, механич. напряжений в пьезоэлект-риках (см. Пьезоэлектричество). Возможна и спонтанная (самопроизвольная) П. д. у пироэлектриков, в частности у сегнетоэлектриков.

2) Электрич. дипольный момент единицы объёма диэлектрика.

ПОЛЯРИЗАЦИЯ НЕБЕСНОГО СВОДА, одно из оптич. явлений атмосферы, наблюдаемое при безоблачной погоде днём, а также ночью при лунном свете. Заключается в том, что лучистый поток, поступающий на земную поверхность в виде рассеянного толщей воздуха света неба, частично поляризован (см. Поляризация света). П. н. с. была открыта франц. учёным Д. Араго в 1809. Невооружённым глазом она не может быть замечена и обнаруживается при помощи полярископа (см. Поляризационные приборы). Поляризация в данной точке неба количественно характеризуется прежде всего двумя величинами: степенью поляризации, к-рая представляет собой отношение полностью поляризованного потока лучистой энергии ко всему потоку, поступающему от данного участка неба, и положением плоскости поляризации, определяемой двугранным углом, составляемым последней с плоскостью вертикала. Наиболее полно П. н. с. изучена для вертикала, проходящего через Солнце. Максимум степени поляризации, как правило, наблюдается в точке вертикала, отстоящей от солнечного диска на 90°, где доля поляризованных лучей может доходить до 85%, а плоскость поляризации совпадает с плоскостью вертикала. От этой точки П. н. с. уменьшается в обе стороны и достигает нуля в т. н. нейтральных точках неба - точках Араго и Бабине. П. н. с. имеет суточный и годовой ход и зависит от условий погоды, геогр. положения местности и др. факторов. Свет, рассеиваемый крупными частицами, совсем не поляризован, поэтому даже небольшая облачность сильно снижает П. н. с. Увеличение мутности атмосферы за счёт пыли, дыма, вулканич. пепла и тому подобных примесей также влечёт за собой резкое снижение П. н. с., поэтому степень П. н. с. может служить косвенным признаком прозрачности атмосферы.

Лит.: Соболев В. В., Рассеяние света в атмосферах планет, М., 1972.

ПОЛЯРИЗАЦИЯ СВЕТА, одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). П. с. наз. также геометрич. характеристики, к-рые отражают особенности этого неравноправия. Впервые понятие о П. с. было введено в оптику И. Ньютоном в 1704-06, хотя явления, обусловленные ею, изучались и ранее (открытие двойного лучепреломления в кристаллах Э. Бартолином в 1669 и его тео.ретич. рассмотрение X. Гюйгенсом в 1678-90). Сам термин "П. с." предложен в 1808 Э. Малюсом. С его именем и с именами Ж. Био, О. Френеля, Д. Араго, Д. Брюстера и др. связано начало широкого исследования эффектов, в основе к-рых лежит П. с.

Существ. значение для понимания П. с. имело её проявление в эффекте интерференции света. Именно тот факт, что два световых луча, линейно поляризованных (см. ниже) под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816-19). П. с. нашла естеств. объяснение в электромагнитной теории света Дж. К. Максвелла (1865-73) (см. Оптика).

Поперечность световых волн (как и любых др. электромагнитных волн) выражается в том, что колеблющиеся в них векторы напряжённости электрического поля Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Б к Н выделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. Кроме того, Е и Н почти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния П. с. требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

Световой импульс, испускаемый к.-л. . отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризован полностью. Но макроскопич. источники света состоят из огромного числа таких частиц-излучателей; пространств. ориентации векторов Е (и моменты актов излучения) световых импульсов отд. частиц в большинстве случаев распределены хаотически (это не относится, напр., к лазерам!). Кроме того, поляризация меняется в результате процессов взаимодействия между частицами-излучателями. Поэтому в общем излучении подавляющего большинства источников направление Е не определено (оно непрерывно и беспорядочно меняется за чрезвычайно малые промежутки времени). Подобное излучение наз. неполяризованным, или естественным, светом. Е, как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естеств. свете разность фаз между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты Е когерентны (см. Когерентность). Создав определённые условия на пути распространения естеств. света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная (о смысле этого понятия см. ниже) П. с. возникает в ряде природных процессов испускания света и его взаимодействия с веществом.

Полную поляризацию монохроматического света характеризуют проекцией траектории конца вектора Е (рис. 1) в каждой точке луча на плоскость, перпендикулярную лучу. В самом общем случае т. н. эллиптической поляризации такая проекция -эллипс, что легко понять, учитывая постоянство разности фаз между взаимно перпендикулярными компонентами Е и одинаковость частоты их колебаний в монохроматической волне. Для полного описания эллиптич. П. с. необходимо знать направление вращения Е по эллипсу (правое или левое), ориентацию осей эллипса и его эксцентриситет (см., напр., рис. 2, б, г, е). Наибольший интерес представляют предельные случаи эллиптич. П. с.- линейная П. с. (разность фаз 0, kп, где k - целое число, рис. 2, а и д), когда эллипс вырождается в отрезок прямой, и круговая, или циркулярная, П. с. [разность фаз ±(2k + 1)п/2], при к-рой эллипс поляризации превращается в окружность. Определяя состояние линейно- или пло-скополяризованного света, достаточно указать положение плоскости поляризации света, поляризованного по кругу,- направление вращения (правое -рис. 2, в, или левое). В сложных неоднородных световых волнах (напр., в металлах или при полном внутреннем отражении) мгновенные направления векторов Е и Н уже не связаны простым соотношением ортогональности, и для полного описания П. с. в таких волнах требуется знание поведения каждого из этих векторов по отдельности.
[2023-4.jpg]

Рис. 1. Колебания проекций электрического вектора Е световой волны на взаимно перпендикулярные оси х и у (г - направление распространения волны, перпендикулярное как х, так и у). 6 и в -моментальные изображения колебаний и соответствующей огибающей концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси х) колебания на четверть периода (90°) опережают горизонтальные (по оси у). В каждой одной точке конец Е в этом случае описывает окружность. Стрелки на в нанесены лишь для того, чтобы яснее показать вид правого винта. Винтовая поверхность отнюдь не вращается вокруг z при прохождении волны. Напротив, следует представлять, что вся винтовая поверхность как целое, не вращаясь, переносится вдоль z со скоростью волны.

Рис. 2. Примеры различных поляризаций светового луча (траекторий конца электрического вектора Е в к.-л. одной точке луча) при различных разностях фаз между взаимно перпендикулярными компонентами Ех и Еу. Плоскость рисунков перпендикулярна направлению распространения света: а и д - линейные поляризации; в - правая круговая поляризация; б, г и е - эллиптические поляризации различной ориентации. Приведённые рисунки соответствуют положительным разностям фаз б (опережению вертикальных колебаний по сравнению с горизонтальными). X -длина волны света.

[2023-5.jpg]

Если фазовое соотношение между компонентами (проекциями) Е меняется за времена, много меньшие времени измерения П. с., нельзя говорить о полной П. с. Однако может случиться, что в составляющих пучок света монохроматич. волнах Е меняется не совершенно хаотически, а между взаимно перпендикулярными комп