БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РАСШИРЯЮЩИЙСЯ ЦЕМЕНТ, собирательное назв. группы цементов.
РЕЛАКСАЦИЯ МАГНИТНАЯ, один из этапов релаксации - процесс установления.
РЕЧНОЙ ШТАТ (Rivers State), штат на Ю. Нигерии.
САХАРОВ Андрей Дмитриевич (р. 21.5. 1921, Москва), советский физик, акад. АН СССР.
СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ, раздел инженерной сейсмологии.
СЕРОВОДОРОД, H2S, то же, что сернистый водород.
СИМАБАРСКОЕ ВОССТАНИЕ, крупнейшее крест. восстание в Японии.
СКАФАНДР (франц. scaphandre, от греч. skaphe - лодка и апёг, род. падеж andros - человек).
СЛОЖНАЯ ФУНКЦИЯ, функция от функции.
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8406202921612109121йств кристаллов, М., 1954; Васильев Б. И., Оптика поляризационных приборов, М., 1969. В. С. Запасский.

ПОЛЯРИЗАЦИОННЫЕ ПРИЗМЫ, один из классов призм оптических. П. п. служат линейными поляризаторами - с их помощью получают линейно поляризованное оптическое излучение (см. Поляризация света). Обычно П. п. состоят из 2 или более трёхгранных призм, по меньшей мере одна из к-рых вырезается из оптически анизотропного (см. Оптическая анизотропия) кристалла. Конструктивно П. п. выполняют так, что проходящее через них излучение должно преодолеть наклонную границу раздела 2 сред, на к-рой условия преломления света для компонент светового пучка, поляризованных в 2 взаимно перпендикулярных плоскостях, резко различаются. В частности, для одной из этих компонент на границе раздела могут выполняться условия полного внутреннего отражения, в результате чего через П. п. проходит лишь др. компонента. Таковы, напр., широко распространённые П. п. Николя (часто наз. просто николями, рис. 1) и Фуко (рис. 2), в к-рых пропускается необыкновенный луч е (см. Двойное лучепреломление, Кристаллооптика), а отсекается - поглощается или выводится в сторону - обыкновенный луч о. Подобные П. п. наз. однолучевыми. Двухлучевые П. п. пропускают обе взаимно-перпендикулярно линейно поляризованные компоненты исходного пучка, пространственно разделяя их. Чаще всего П. п. изготовляют из исландского шпата СаСО3, прозрачного в диапазоне длин волн X = 0,2-2 мкм, и кристаллич. кварца SiO2, прозрачного при X = 0,185-3,5 мкм.

Рис. 1. Призма Николя. Штриховка указывает направление оптических осей кристаллов в плоскости чертежа. Направления электрических колебаний световых волн указаны на лучах стрелками (колебания происходят в плоскости рисунка) и точками (колебания перпендикулярны плоскости рисунка). О и е -обыкновенный и необыкновенный лучи. Чернение на нижней грани призмы поглощает полностью отражаемый от плоскости склейки обыкновенный луч. Клей - канадский бальзам.

Рис. 2. Укороченная поляризационная призма Фуко с воздушным промежутком. Обозначения те же, что и на рис. 1.

Трёхгранные призмы, из к-рых состоят однолучевые П. п., часто склеивают прозрачным веществом с преломления показателем (ПП) п, близким к среднему значению ПП обыкновенного (nO) и необыкновенного (пе) лучей. Клеющими веществами служат канадский бальзам, глицерин, касторовое и льняное масла и др. Во мн. П. п. их части разделены не клеем, а воздушной прослойкой, что снижает потери на поглощение при высоких плотностях излучения и даёт ряд преимуществ при работе в ультрафиолетовой (УФ) области спектра. Используют также прослойки из плавленого кварца. Применяют П. п., в к-рых кристаллич. пластинка вклеена между двумя призмами из стекла, ПП к-рого близок к большему ПП кристалла (рис. 3). В таких П. п. проходит обыкновенный луч, а отражается необыкновенный. Для того чтобы один из лучей претерпевал на границе раздела (склейки) полное внутр. отражение, выбираются определённые значения преломляющих углов трёхгранных призм и, как правило, определённые ориентации оптич. осей кристаллов, из к-рых они вырезаны. Такое отражение происходит, если углы падения лучей на П. п. не превышают нек-рых предельных углов I1 и I2 (см., напр., рис. 4 - П. п. Глана -Томсона). Сумма I1 + I2 наз. апертурой полной поляризации П. п.; её величина существенна при работе с П. п. в сходящихся пучках излучения.

Рис. 3. Линейный поляризатор (поляризационная призма) из стекла и исландского шпата. Точки в прослойке шпата указывают, что его оптическая ось перпендикулярна плоскости рисунка. Остальные обозначения те же, что и на рис.1.

В П. п. со скошенными гранями (Николя, Фуко и др.) проходящий луч испытывает параллельное смещение, поэтому при вращении призмы вокруг луча последний также вращается. От этого и нек-рых иных недостатков таких П. п. свободны П. п. в форме прямоугольных параллелепипедов: Глана - Томсона, Глана (рис. 5), Глазебрука (рис. 6), Франка - Риттера (рис. 7) и пр.

Из двухлучевых П. п. наиболее распространены П. п. Рошона, Сенармона, Волластона и нек-рые др. (рис. 8). Один из двух пропускаемых лучей в П. п. Рошона и Сенармона не меняет своего направления, другой (необыкновенный) отклоняется на угол 9 (его величина ~5-6°), сильно зависящий от длины волны света: б = (n0 - ne)tga, где а - преломляющий угол трёхгранных призм. П. п. Волластона даёт удвоенный угол расхождения лучей 26 (ок. 10°), причём при перпендикулярном падении отклонения лучей симметричны; эта П. п применяется в поляризационных фотометрах, спектрофотометрах и поляриметрах. Угол а в П. п. из исландского шпата близок к 30°, из кристаллич. кварца - к 60°.

Рис. 4. Предельные углы падения I1 и Iz лучей на поляризационную призму Глана - Томсона. Обозначения при лучах те же, что и на рис. 1. Клеем служит канадский бальзам (апертура полной поляризации е = I1 + I2 = 27,5°) или льняное масло (е = 41°). Угол а = 76,5°.

Рис. 5. Поляризационная призма Глана. А В - воздушный промежуток. Точки на обеих трёхгранных призмах указывают, что их оптические оси перпендикулярны плоскости рисунка. Обозначения при лучах те же, что и на рис. 1.

Рис. 6. Поляризационная призма Гла-зебрука. Обозначения при лучах те же, что и на рис. 1. При склейке в плоскости АВ канадским бальзамом угол а = 12,1°, льняным маслом - 14°, глицерином -17,3°. Оптические оси кристаллов обеих прямоугольных призм перпендикулярны плоскости рисунка (помечено точками).

Рис. 7. Поляризационная призма Франка - Риттера (клей - канадский бальзам): а - вид сбоку; 6 - вид по ходу луча. Оптические оси кристаллических прямоугольных призм направлены под углом 45° к плоскости рисунка а и под углом 90° к плоскости колебаний электрического вектора необыкновенного луча (его плоскости поляризации).

Рис. 8. Двухлучевые поляризационные призмы: а - призма Рошона; б-призма Сенармона; в -призма Волластона; г -призма из исландского шпата и стекла; д - призма Аббе. Штриховка указывает направление оптических осей кристаллов в плоскости рисунка. Точки означают, что оптическая ось перпендикулярна плоскости рисунка. Стрелки и точки на лучах указывают направления колебаний электрического вектора.

Для П. п., как правило, характерны незначит. апертура полной поляризации, высокая стоимость и относительно большие размеры. Они требуют аккуратного обращения, но практически лишены хроматической аберрации, незаменимы при работе в УФ области спектра и в мощных потоках оптич. излучения и позволяют получать однородно поляризованные пучки, степень поляризации к-рых лишь на ~10-5 отличается от 1.

Лит. см. при ст. Поляризационные приборы, Поляризация света. В. С. Запасский.

ПОЛЯРИЗАЦИЯ (франц. polarisation, первоисточник: греч. polos - ось, полюс) биоэлект р и ческа я, возникновение двойного электрич. слоя на границе между наружной средой и содержимым живой клетки; при этом наружная поверхность клетки в состоянии покоя заряжена положительно по отношению к её содержимому, имеющему отрицат. заряд.

Постоянная биоэлектрич. П. обусловлена особенностями строения биологич. мембран, а также неравномерным распределением неорганич. ионов (в первую очередь К+, Na+, Cl-) в содержимом клетки и в окружающей её среде (электрохим. градиенты). Потенциал покоя - непосредственное следствие П. У большинства живых клеток концентрация ионов К+ в протоплазме в 20-50 раз выше, чем во внеклеточной жидкости. Поверхностная мембрана этих клеток в состоянии покоя более проницаема для ионов К+, чем для др. катионов. Поэтому ионы К+, диффундируя из клетки наружу, приводят к накоплению избытка положит, зарядов на наружной стороне мембраны, на внутренней же образуется избыток отрицат. зарядов (см. Мембранная теория возбуждения). Для ионов Na+, Ca2+ и С1- мембрана в покое мало проницаема, но в активированном состоянии происходит изби-рат. повышение проницаемости для к.-л. из этих ионов, что приводит к изменению П. (см. Биоэлектрические потенциалы). Так, мембрана возбуждённого участка нерва становится на короткое время проницаемой для ионов Na+, вход к-рых в клетку приводит к деполяризации мембраны. Если эта деполяризация достигает критич. уровня, возникает потенциал действия. Нисходящая фаза потенциала действия, в течение к-рого П. мембраны возвращается к уровню покоя, наз. фазой реполяризации мембраны. При увеличении потенциала покоя выше нормального уровня происходит гиперполяризация мембраны. Относит. постоянство уровня П. живой клетки обеспечивается постоянством электрохим. градиентов, что, в свою очередь, поддерживается работой ионных насосов (см. "Натриевый насос"), затрачивающих энергию на противоградиентный перенос ионов через мембрану (см. Активный транспорт ионов).

Лит. см. при ст. Биоэлектрические потенциалы, Мембранная теория возбуждения, Проницаемость биологических мембран.

Л. Г. Магазаник.

ПОЛЯРИЗАЦИЯ ВАКУУМА в квантовой теории поля, изменение в распределении виртуальных пар заряженных частиц-античастиц под воздействием электромагнитного поля. П. в., предсказанная квантовой электродинамикой, приводит к появлению эффектов, к-рые могут быть обнаружены на опыте: поправкам